Advanced Search
WU Tong, GAO Fei, TENG Fei, ZHANG Qiaoli. Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 42-51. DOI: 10.3971/j.issn.1000-8578.2025.24.0562
Citation: WU Tong, GAO Fei, TENG Fei, ZHANG Qiaoli. Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 42-51. DOI: 10.3971/j.issn.1000-8578.2025.24.0562

Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study

Funding: Beijing Natural Science Foundation General Program (No. 7202122); The Jiebangguashuai Fund Project of the Beijing University of Chinese Medicine (No. 2023-JYB-JBZD-038)
More Information
  • Corresponding author:

    ZHANG Qiaoli, E-mail: zhangqiaoli1009@126.com

  • Received Date: June 16, 2024
  • Revised Date: August 25, 2024
  • Accepted Date: October 20, 2024
  • Available Online: November 03, 2024
  • Objective 

    To identify core targets of hepatocellular carcinoma (HCC) by using bioinformatics and specific algorithms, explore their relationships with immune cells, and investigate the causal relationships between immune cells and HCC through Mendelian randomization.

    Methods 

    Relevant genes associated with the development of HCC were screened using the GEO and TCGA databases. Immune infiltration analysis was conducted using GSVA and CIBERSORT algorithms. A bidirectional Mendelian randomization analysis was then performed to explore the causal relationships between immune cells and HCC.

    Results 

    A total of 284 HCC-related genes were identified, with 120 genes recognized within the protein interaction network. Immune infiltration analysis revealed significant correlations between key genes and immune cells. Mendelian randomization results indicated that HLA DR on CD33+ HLA DR+ CD14dim (OR=1.097, 95%CI: 1.002–1.201, P=0.045, PBonferroni=0.091) and CD8 on CD28+ CD45RA+ CD8+ T cell (OR=1.123, 95%CI: 1.027–1.228, P=0.011, PBonferroni=0.022) were the risk factors for HCC. Conversely, HLA DR++ monocyte absolute count was identified as a protective factor for HCC (OR=0.812, 95%CI: 0.702–0.938, P=0.005, PBonferroni=0.139).

    Conclusion 

    The occurrence and development of liver cancer may be related to CDK1, CCNB1, and CDC20, showing a high degree of correlation with Th2 cells, T helper cells, Th17 cells, and DCs. Mendelian randomization shows that HLA DR on CD33+HLA DR+ CD14dim and CD8 on CD28+CD45RA+CD8+T cells are associated with an increased risk of HCC. The risk of hepatocellular carcinoma is associated with a decrease in the level of HLA DR++monocyte absolute count.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834
    [2]
    Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
    [3]
    Thomas London W, Petrick JL, et al. Liver cancer. In: M Thun, MS Linet, JR Cerhan, CA Haiman, D Schottenfeld, eds. Cancer Epidemiology and Prevention[M]. 4th ed. Oxford University Press, 2018: 635-660.
    [4]
    中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40(5): 893-918. [National Health Commission of the People's Republic of China. Primary liver cancer Diagnosis and treatment guidelines (2024 edition)[J]. Lin Chuang Gan Dan Bing Za Zhi, 2024, 40(5): 893-918.] doi: 10.12449/JCH240508

    National Health Commission of the People's Republic of China. Primary liver cancer Diagnosis and treatment guidelines (2024 edition)[J]. Lin Chuang Gan Dan Bing Za Zhi, 2024, 40(5): 893-918. doi: 10.12449/JCH240508
    [5]
    Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017, 24(3): 1073274817729245.
    [6]
    刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-14. [Liu ZC, Li ZX, Zhang Y, et al. Interpretation of 2020 global cancer statistics report[J]. Zhong Liu Zong He Zhi Liao Dian Zi Za Zhi, 2019, 7(2): 1-14.]

    Liu ZC, Li ZX, Zhang Y, et al. Interpretation of 2020 global cancer statistics report[J]. Zhong Liu Zong He Zhi Liao Dian Zi Za Zhi, 2019, 7(2): 1-14.
    [7]
    de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. doi: 10.1016/j.ccell.2023.02.016
    [8]
    Yasuoka H, Asai A, Ohama H, et al. Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis[J]. Sci Rep, 2020, 10(1): 10377. doi: 10.1038/s41598-020-67497-2
    [9]
    Cao D, Chen MK, Zhang QF, et al. Identification of immunological subtypes of hepatocellular carcinoma with expression profiling of immune-modulating genes[J]. Aging (Albany NY), 2020, 12(12): 12187-12205.
    [10]
    Liu F, Qin L, Liao Z, et al. Microenvironment characterization and multi-omics signatures related to prognosis and immunotherapy response of hepatocellular carcinoma[J]. Exp Hematol Oncol., 2020, 9: 10. doi: 10.1186/s40164-020-00165-3
    [11]
    黄燕妮, 蓝雪灵, 朱敏敏, 等. PD-1/PD-L1抑制剂联合抗血管内皮生长因子药物免疫治疗晚期肝癌的研究进展[J]. 中国药理学通报, 2024, (8): 1429-1436. [Huang Yanni, LAN Xueling, Zhu Minmin, et al. Research progress of PD-1/PD-L1 inhibitors combined with anti-vascular endothelial growth factor drugs in immunotherapy of advanced liver cancer[J]. Zhongguo Yao Li Xue Tong Bao, 2024, (8): 1429-1436.]

    Huang Yanni, LAN Xueling, Zhu Minmin, et al. Research progress of PD-1/PD-L1 inhibitors combined with anti-vascular endothelial growth factor drugs in immunotherapy of advanced liver cancer[J]. Zhongguo Yao Li Xue Tong Bao, 2024, (8): 1429-1436.
    [12]
    Luo X, Huang W, Li S, et al. SOX12 Facilitates Hepatocellular Carcinoma Progression and Metastasis through Promoting Regulatory T-cells Infiltration and Immunosuppression[J]. Adv Sci (Weinh), 2024, 11(36): e2310304.
    [13]
    Haycock PC, Burgess S, Wade KH, et al. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies[J]. Am J Clin Nutr, 2016, 103(4): 965-978. doi: 10.3945/ajcn.115.118216
    [14]
    Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization[J]. Nat Rev Methods Primers, 2022, 2: 6. doi: 10.1038/s43586-021-00092-5
    [15]
    Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. doi: 10.1038/s41588-020-0684-4
    [16]
    Birney E. Mendelian Randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302.
    [17]
    Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. doi: 10.1093/ije/dyq151
    [18]
    Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. doi: 10.1093/bioinformatics/btz469
    [19]
    Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. doi: 10.1007/s10654-017-0255-x
    [20]
    Wu F, Huang Y, Hu J, et al. Mendelian randomization study of inflammatory bowel disease and bone mineral density[J]. BMC Med, 2020, 18(1): 312. doi: 10.1186/s12916-020-01778-5
    [21]
    Hao X, Ren C, Zhou H, et al. Association between circulating immune cells and the risk of prostate cancer: a Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2024, 15: 1358416.
    [22]
    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. doi: 10.3322/caac.21338
    [23]
    Liao S, Wang K, Zhang L, et al. PRC1 and RACGAP1 are Diagnostic Biomarkers of Early HCC and PRC1 Drives Self-Renewal of Liver Cancer Stem Cells[J]. Front Cell Dev Biol, 2022, 10: 864051. doi: 10.3389/fcell.2022.864051
    [24]
    Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma[J]. Cancer Lett, 2020, 470: 8-17. doi: 10.1016/j.canlet.2019.12.002
    [25]
    Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases[J]. Trends Biochem Sci, 2005, 30(11): 630-641.
    [26]
    Zou Y, Ruan S, Jin L, et al. CDK1, CCNB1, and CCNB2 are Prognostic Biomarkers and Correlated with Immune Infiltration in Hepatocellular Carcinoma[J]. Med Sci Monit, 2020, 26: e925289.
    [27]
    Wang Z, Wan L, Zhong J, et al. Cdc20: a potential novel therapeutic target for cancer treatment[J]. Curr Pharm Des, 2013, 19(18): 3210-3214.
    [28]
    Wang J, Amin A, Cheung MH, et al. Targeted inhibition of the expression of both MCM5 and MCM7 by miRNA-214 impedes DNA replication and tumorigenesis in hepatocellular carcinoma cells[J]. Cancer Lett, 2022, 539: 215677. doi: 10.1016/j.canlet.2022.215677
    [29]
    Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation[J]. Science, 1996, 272(5258): 54-60. doi: 10.1126/science.272.5258.54
    [30]
    Hamann D, Baars PA, Rep MH, et al. Phenotypic and functional separation of memory and effector human CD8 T cells[J]. J Exp Med, 1997, 186(9): 1407-1418. doi: 10.1084/jem.186.9.1407
    [31]
    Pilch H, Hoehn H, Schmidt M, et al. CD8+CD45RA+CD27-CD28-T-cell subset in PBL of cervical cancer patients representing CD8+T-cells being able to recognize cervical cancer associated antigens provided by HPV 16 E7[J]. Zentralbl Gynakol, 2002, 124(8-9): 406-412.
    [32]
    Höhn H, Jülch M, Pilch H, et al. Definition of the HLA-A2 restricted peptides recognized by human CD8+ effector T cells by flow-assisted sorting of the CD8+ CD45RA+ CD28- T cell subpopulation[J]. Clin Exp Immunol, 2003, 131(1): 102-110. doi: 10.1046/j.1365-2249.2003.02036.x
    [33]
    Wu Z, Shi H, Zhang L, et al. Comparative analysis of monocyte-derived dendritic cell phenotype and T cell stimulatory function in patients with acute-on-chronic liver failure with different clinical parameters[J]. Front Immunol, 2023, 14: 1290445. doi: 10.3389/fimmu.2023.1290445
    [34]
    Mengos AE, Gastineau DA, Gustafson MP. The CD14+HLA-DRlo/neg Monocyte: An Immunosuppressive Phenotype That Restrains Responses to Cancer Immunotherapy[J]. Front Immunol, 2019, 10: 1147. doi: 10.3389/fimmu.2019.01147
    [35]
    Gustafson MP, Lin Y, Bleeker JS, et al. Intratumoral CD14+ Cells and Circulating CD14+HLA-DRlo/neg Monocytes Correlate with Decreased Survival in Patients with Clear Cell Renal Cell Carcinoma[J]. Clin Cancer Res, 2015, 21(18): 4224-4233.
  • Related Articles

    [1]HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438
    [2]WU Tong, GAO Fei, TENG Fei, ZHANG Qiaoli. Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 42-51. DOI: 10.3971/j.issn.1000-8578.2025.24.0562
    [3]YUAN Chendong, SHU Xufeng, WANG Xiaoqiang, JIE Zhigang. Relationship Between High-Density Lipoprotein Cholesterol and Colorectal Cancer—A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 847-851. DOI: 10.3971/j.issn.1000-8578.2024.24.0153
    [4]GONG Wanli, HOU Yaqi, WANG Yue, LI Yuan, QI Rongxuan, YU Qi, ZHANG Juan. Immune Cell-Mediated Effect of Lipid Profile on Colorectal Cancer: A Two-Step, Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 831-839. DOI: 10.3971/j.issn.1000-8578.2024.24.0284
    [5]LIU Jingting, ZHOU Yawei, KONG Lingguo, WANG Qiandan, SU Tianxiong, PEI Jianying, LI Yan. Causal Association Between Immune Cells and Cervical Cancer: A Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 772-778. DOI: 10.3971/j.issn.1000-8578.2024.24.0037
    [6]WANG Yuanhang, SONG Zhiyuan, LU Ping, ZHANG Min. Analysis of Association Between Immune Cells and Breast Cancer Based on Two-sample Mendelian Randomization Method[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 348-352. DOI: 10.3971/j.issn.1000-8578.2024.23.1125
    [7]LIU Longjiao, YAO Yufeng. Circulating Inflammatory Proteins in Relation to Risk of Breast Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 342-347. DOI: 10.3971/j.issn.1000-8578.2024.23.1344
    [8]WEI Wei, LIU Ming, XU Jianguo, GAO Ya, SHEN Caiyi, TIAN Jinhui. Causal Relationship Between Acromegaly and Colon Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1209-1213. DOI: 10.3971/j.issn.1000-8578.2023.23.0507
    [9]WANG Mengyuan, XU Hengmin, WANG Jingxuan, PAN Kaifeng, LI Wenqing. Mendelian Randomization Analysis of Research on Risk Factors for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 470-476. DOI: 10.3971/j.issn.1000-8578.2023.22.1411
    [10]Xin-ying ZHOU, Hu ZHANG, Hai-yan DAI. Mendelian randomization analysis of the correlation between interleukin and the risk of gynecological tumors[J]. Cancer Research on Prevention and Treatment. DOI: 10.3971/j.issn.1000-8578.20240994
  • Cited by

    Periodical cited type(13)

    1. 吴杨,隋雨桐,李斌鹏,韩路拓,姜家康. 激酶/转录因子信号通路调控肺癌机制及中医药干预的研究进展. 世界中医药. 2025(01): 142-147+154 .
    2. 曹家瑞,冯博,马纯政,陈伟霞,喻江凡,曹莎莎,张振予,欧阳文慧. 中医药调控JAK/STAT信号通路干预肺癌的机制研究进展. 中国实验方剂学杂志. 2025(09): 265-276 .
    3. 梁帅,尹怡,刘湘花,汪保英,骆文龙,龙云凯,任振杰,王祥麒. 升降理肺消瘤汤对Lewis肺癌小鼠免疫炎性反应和JAK2/STAT3信号通路的影响. 辽宁中医药大学学报. 2024(04): 27-32 .
    4. 张彩蝶,靳艳,张德德. 润肺益肾饮对肺癌荷瘤大鼠的抑瘤作用和肿瘤免疫微环境的影响. 天津医药. 2024(04): 362-366 .
    5. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    6. 兰春燕,杨小兰,贺雪峰,赵丹,杨海燕. 甘草苷对胃癌荷瘤小鼠免疫功能的调节作用及机制研究. 中国药房. 2024(15): 1862-1867 .
    7. 张景淇,郭静,陈娅欣,蒲玥衡,向俊杰. 中药调控肺癌相关信号通路研究进展. 中国实验方剂学杂志. 2024(19): 233-244 .
    8. 张孟恩,韩睿,徐超,庞训胜,王世琴. 地顶孢霉培养物在反刍动物生产中的应用研究进展. 中国畜牧杂志. 2024(12): 70-74 .
    9. 高铭,丁美灵,雷紫琴,胡靖文,栾飞,曾南. 荆防败毒散及其中成药制剂研究进展. 中药药理与临床. 2023(05): 112-118 .
    10. 朱亚兰,吕世文,曾晨欣,徐媛青. 苍术素对非小细胞肺癌细胞上皮间质转化的影响及机制研究. 浙江医学. 2023(10): 1013-1018 .
    11. 陈才伟,陈家亮,李华娟,方芳,文方玲. 虫草素调节MAPK/AP-1信号通路对慢性阻塞性肺疾病大鼠肺组织损伤的影响. 临床肺科杂志. 2023(11): 1656-1661 .
    12. 李翔子,王西双,范建伟,杨田野,王丽娟,孙颖,姚景春. 荆防合剂通过抑制JAK2-STAT3信号通路调节荨麻疹小鼠脾脏T淋巴细胞亚群的平衡. 中国中药杂志. 2022(20): 5473-5480 .
    13. 沈栩岚,黄凌霞. 虫草素的抗癌机理. 蚕桑通报. 2022(02): 33-34 .

    Other cited types(4)

Catalog

    Figures(8)  /  Tables(2)

    Article views (903) PDF downloads (250) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return