Advanced Search
HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438
Citation: HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438

Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study

Funding: Guidance Research Project of Suzhou Science and Technology Bureau (No. SYSD2021075)
More Information
  • Corresponding author:

    CUI Hongquan, E-mail: 317791773@qq.com

  • Received Date: May 13, 2024
  • Revised Date: July 01, 2024
  • Accepted Date: November 11, 2024
  • Objective 

    To analyze the causal relationship between immune cell phenotype and gastric cancer.

    Methods 

    Bidirectional two-sample Mendelian randomization (MR) analysis was used to select 731 genetic variants involving immune cell phenotypes from the GWAS dataset as instrumental variables. Inverse-variance weighting method (IVW), weighted median method (WM), and MR-Egger regression were used for sensitivity analysis. Cochran Q test, MR-Egger regression, MR-PRESSO method, and remain-one method were also conducted.

    Results 

    Changes in the absolute count of IgD+ B cells and CD14-CD16- cells were significantly associated with the risk of gastric cancer. A lower proportion of IgD+ B cells was associated with a lower risk of gastric cancer (OR=0.86, 95%CI: 0.79-0.94), while an increased number of CD4-CD8-T cells was associated with an increased risk of gastric cancer (OR=1.2, 95%CI: 1.1-1.3).

    Conclusion 

    A causal relationship exists between immune cell phenotype and the risk of gastric cancer. Changes in specific immune markers may regulate the development of gastric cancer by affecting the tumor microenvironment.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2]
    Huang YK, Wang M, Sun Y, et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry[J]. Nat Commun, 2019, 10(1): 3928. doi: 10.1038/s41467-019-11788-4
    [3]
    Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing[J]. Gut, 2021, 70(3): 464-475. doi: 10.1136/gutjnl-2019-320368
    [4]
    Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016, 17(7): 956-965. doi: 10.1016/S1470-2045(16)30066-3
    [5]
    Gagliano Taliun SA, Evans DM. Ten simple rules for conducting a mendelian randomization study[J]. PLoS Comput Biol, 2021, 17(8): e1009238. doi: 10.1371/journal.pcbi.1009238
    [6]
    Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764. doi: 10.1093/ije/dyr036
    [7]
    Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. doi: 10.1038/s41588-020-0684-4
    [8]
    Yu XH, Yang YQ, Cao RR, et al. The causal role of gut microbiota in development of osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(12): 1741-1750. doi: 10.1016/j.joca.2021.08.003
    [9]
    Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study[J]. BMC Psychiatry, 2023, 23(1): 590. doi: 10.1186/s12888-023-05081-4
    [10]
    Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study[J]. Hepatology, 2022, 75(4): 785-796. doi: 10.1002/hep.32183
    [11]
    Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. doi: 10.1002/gepi.21758
    [12]
    Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. doi: 10.1038/s41588-018-0099-7
    [13]
    Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. doi: 10.1007/s10654-017-0255-x
    [14]
    Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers[J]. Cancer Sci, 2020, 111(8): 2696-2707. doi: 10.1111/cas.14521
    [15]
    Pernot S, Terme M, Radosevic-Robin N, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020, 23(1): 73-81. doi: 10.1007/s10120-019-00983-3
    [16]
    Wang YC, Wang JL, Kong X, et al. CD24 mediates gastric carcinogenesis and promotes gastric cancer progression via STAT3 activation[J]. Apoptosis, 2014, 19(4): 643-656. doi: 10.1007/s10495-013-0949-9
    [17]
    Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement[J]. JAMA, 2021, 326(16): 1614-1621. doi: 10.1001/jama.2021.18236
    [18]
    Zhao H, Wen J, Dong X, et al. Identification of AQP3 and CD24 as biomarkers for carcinogenesis of gastric intestinal metaplasia[J]. Oncotarget, 2017, 8(38): 63382-63391. doi: 10.18632/oncotarget.18817
    [19]
    Duckworth CA, Clyde D, Pritchard DM. CD24 is expressed in gastric parietal cells and regulates apoptosis and the response to Helicobacter felis infection in the murine stomach[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(8): G915-926. doi: 10.1152/ajpgi.00068.2012
    [20]
    杨静, 王军, 路红, 等. 幽门螺杆菌通过胃癌干细胞诱导胃癌发生的机制[J]. 医学综述, 2021, 27(1): 84-89. [Yang J, Wang J, Lu H, et al. Mechanism of Helicobacter Pylori Inducing Gastric Cancer through Gastric Cancer Stem Cells[J]. Yi Xue Zong Shu, 2021, 27(1): 84-89.] doi: 10.3969/j.issn.1006-2084.2021.01.016

    Yang J, Wang J, Lu H, et al. Mechanism of Helicobacter Pylori Inducing Gastric Cancer through Gastric Cancer Stem Cells[J]. Yi Xue Zong Shu, 2021, 27(1): 84-89. doi: 10.3969/j.issn.1006-2084.2021.01.016
    [21]
    Fang L, Ly D, Wang SS, et al. Targeting late-stage non-small cell lung cancer with a combination of DNT cellular therapy and PD-1 checkpoint blockade[J]. J Exp Clin Cancer Res, 2019, 38(1): 123. doi: 10.1186/s13046-019-1126-y
    [22]
    Wu Z, Zheng Y, Sheng J, et al. CD3+CD4-CD8- (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer[J]. Front Immunol, 2022, 13: 816005. doi: 10.3389/fimmu.2022.816005
    [23]
    Greenplate AR, McClanahan DD, Oberholtzer BK, et al. Computational immune monitoring reveals abnormal double-negative T cells present across human tumor types[J]. Cancer Immunol Res, 2018, 7(1): 86-99.
    [24]
    Nechvatalova J, Bartol SJW, Chovancova Z, et al. Absence of Surface IgD Does Not Impair Naive B Cell Homeostasis or Memory B Cell Formation in IGHD Haploinsufficient Humans[J]. J Immunol, 2018, 201(7): 1928-1935. doi: 10.4049/jimmunol.1800767
    [25]
    Jia L, Wang T, Zhao Y, et al. Single-cell profiling of infiltrating B cells and tertiary lymphoid structures in the TME of gastric adenocarcinomas[J]. Oncoimmunology, 2021, 10(1): 1969767. doi: 10.1080/2162402X.2021.1969767

Catalog

    Figures(3)  /  Tables(1)

    Article views (520) PDF downloads (246) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return