Citation: | HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438 |
To analyze the causal relationship between immune cell phenotype and gastric cancer.
Bidirectional two-sample Mendelian randomization (MR) analysis was used to select 731 genetic variants involving immune cell phenotypes from the GWAS dataset as instrumental variables. Inverse-variance weighting method (IVW), weighted median method (WM), and MR-Egger regression were used for sensitivity analysis. Cochran Q test, MR-Egger regression, MR-PRESSO method, and remain-one method were also conducted.
Changes in the absolute count of IgD+ B cells and CD14-CD16- cells were significantly associated with the risk of gastric cancer. A lower proportion of IgD+ B cells was associated with a lower risk of gastric cancer (OR=0.86, 95%CI: 0.79-0.94), while an increased number of CD4-CD8-T cells was associated with an increased risk of gastric cancer (OR=1.2, 95%CI: 1.1-1.3).
A causal relationship exists between immune cell phenotype and the risk of gastric cancer. Changes in specific immune markers may regulate the development of gastric cancer by affecting the tumor microenvironment.
Competing interests: The authors declare that they have no competing interests.
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[2] |
Huang YK, Wang M, Sun Y, et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry[J]. Nat Commun, 2019, 10(1): 3928. doi: 10.1038/s41467-019-11788-4
|
[3] |
Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing[J]. Gut, 2021, 70(3): 464-475. doi: 10.1136/gutjnl-2019-320368
|
[4] |
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016, 17(7): 956-965. doi: 10.1016/S1470-2045(16)30066-3
|
[5] |
Gagliano Taliun SA, Evans DM. Ten simple rules for conducting a mendelian randomization study[J]. PLoS Comput Biol, 2021, 17(8): e1009238. doi: 10.1371/journal.pcbi.1009238
|
[6] |
Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764. doi: 10.1093/ije/dyr036
|
[7] |
Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. doi: 10.1038/s41588-020-0684-4
|
[8] |
Yu XH, Yang YQ, Cao RR, et al. The causal role of gut microbiota in development of osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(12): 1741-1750. doi: 10.1016/j.joca.2021.08.003
|
[9] |
Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study[J]. BMC Psychiatry, 2023, 23(1): 590. doi: 10.1186/s12888-023-05081-4
|
[10] |
Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study[J]. Hepatology, 2022, 75(4): 785-796. doi: 10.1002/hep.32183
|
[11] |
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. doi: 10.1002/gepi.21758
|
[12] |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. doi: 10.1038/s41588-018-0099-7
|
[13] |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. doi: 10.1007/s10654-017-0255-x
|
[14] |
Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers[J]. Cancer Sci, 2020, 111(8): 2696-2707. doi: 10.1111/cas.14521
|
[15] |
Pernot S, Terme M, Radosevic-Robin N, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020, 23(1): 73-81. doi: 10.1007/s10120-019-00983-3
|
[16] |
Wang YC, Wang JL, Kong X, et al. CD24 mediates gastric carcinogenesis and promotes gastric cancer progression via STAT3 activation[J]. Apoptosis, 2014, 19(4): 643-656. doi: 10.1007/s10495-013-0949-9
|
[17] |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement[J]. JAMA, 2021, 326(16): 1614-1621. doi: 10.1001/jama.2021.18236
|
[18] |
Zhao H, Wen J, Dong X, et al. Identification of AQP3 and CD24 as biomarkers for carcinogenesis of gastric intestinal metaplasia[J]. Oncotarget, 2017, 8(38): 63382-63391. doi: 10.18632/oncotarget.18817
|
[19] |
Duckworth CA, Clyde D, Pritchard DM. CD24 is expressed in gastric parietal cells and regulates apoptosis and the response to Helicobacter felis infection in the murine stomach[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(8): G915-926. doi: 10.1152/ajpgi.00068.2012
|
[20] |
杨静, 王军, 路红, 等. 幽门螺杆菌通过胃癌干细胞诱导胃癌发生的机制[J]. 医学综述, 2021, 27(1): 84-89. [Yang J, Wang J, Lu H, et al. Mechanism of Helicobacter Pylori Inducing Gastric Cancer through Gastric Cancer Stem Cells[J]. Yi Xue Zong Shu, 2021, 27(1): 84-89.] doi: 10.3969/j.issn.1006-2084.2021.01.016
Yang J, Wang J, Lu H, et al. Mechanism of Helicobacter Pylori Inducing Gastric Cancer through Gastric Cancer Stem Cells[J]. Yi Xue Zong Shu, 2021, 27(1): 84-89. doi: 10.3969/j.issn.1006-2084.2021.01.016
|
[21] |
Fang L, Ly D, Wang SS, et al. Targeting late-stage non-small cell lung cancer with a combination of DNT cellular therapy and PD-1 checkpoint blockade[J]. J Exp Clin Cancer Res, 2019, 38(1): 123. doi: 10.1186/s13046-019-1126-y
|
[22] |
Wu Z, Zheng Y, Sheng J, et al. CD3+CD4-CD8- (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer[J]. Front Immunol, 2022, 13: 816005. doi: 10.3389/fimmu.2022.816005
|
[23] |
Greenplate AR, McClanahan DD, Oberholtzer BK, et al. Computational immune monitoring reveals abnormal double-negative T cells present across human tumor types[J]. Cancer Immunol Res, 2018, 7(1): 86-99.
|
[24] |
Nechvatalova J, Bartol SJW, Chovancova Z, et al. Absence of Surface IgD Does Not Impair Naive B Cell Homeostasis or Memory B Cell Formation in IGHD Haploinsufficient Humans[J]. J Immunol, 2018, 201(7): 1928-1935. doi: 10.4049/jimmunol.1800767
|
[25] |
Jia L, Wang T, Zhao Y, et al. Single-cell profiling of infiltrating B cells and tertiary lymphoid structures in the TME of gastric adenocarcinomas[J]. Oncoimmunology, 2021, 10(1): 1969767. doi: 10.1080/2162402X.2021.1969767
|