Advanced Search
YAN Guangning, YU Ling, LAI Xuwen, YE Danli, WANG Wei, WANG Zhuocai. Correlation Between PD-1/CTLA-4 Expressions with C linicopathological Features and Prognosis of Osteosarcoma Patients[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 63-68. DOI: 10.3971/j.issn.1000-8578.2023.22.0483
Citation: YAN Guangning, YU Ling, LAI Xuwen, YE Danli, WANG Wei, WANG Zhuocai. Correlation Between PD-1/CTLA-4 Expressions with C linicopathological Features and Prognosis of Osteosarcoma Patients[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 63-68. DOI: 10.3971/j.issn.1000-8578.2023.22.0483

Correlation Between PD-1/CTLA-4 Expressions with C linicopathological Features and Prognosis of Osteosarcoma Patients

Funding: 

Youth Program of National Natural and Science Foundation of China 81802962

More Information
  • Corresponding author:

    WANG Zhuocai, E-mail: wangzcmail@163.com

  • Received Date: May 04, 2022
  • Revised Date: July 20, 2022
  • Available Online: January 12, 2024
  • Objective 

    To explore the expression of PD-1 and CTLA-4 in osteosarcoma and their clinical significance.

    Methods 

    Fifty-eight cases of osteosarcoma encountered from 2007 to 2016 were enrolled. The expression levels of PD-1 and CTLA-4 were detected through immunohistochemistry (EnVision method).

    Results 

    PD-1 was positively expressed in 31 (53.4%) cases and negatively expressed in 27 (46.6%) cases. CTLA-4 was positively expressed in 19 (32.8%) cases and negatively expressed in 39 (67.2%) cases. A total of 12 (20.7%) cases were PD-1 and CTLA-4 double positive, whereas 20 (34.5%) cases were double negative, and 26 (44.8%) cases were single positive. The positive expression of PD-1 was correlated with neoadjuvant chemotherapy, tumor metastasis and relapse, and shortened survival time (P < 0.05). The positive expression of CTLA-4 was partly related with late Ennecking stage (P=0.051). Double positive expression was related to the highest tumor metastasis and relapse rates and the worst prognosis (P < 0.05), compared with double negative and single positive expression.

    Conclusion 

    Positive expression of PD-1 and CTLA-4 in osteosarcoma is associated with worse prognosis, whereas double positive expression is associated with the highest tumor relapse and metastasis rates and shortest survival time. These results are potential valuable references for osteosarcoma immunotherapy.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Cesne AL, Marec-Berard P, Blay JY, et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study[J]. Euro J Cancer, 2019, 119: 151-157. doi: 10.1016/j.ejca.2019.07.018
    [2]
    高峰, 洪亚珍, 陈晨, 等. 癌症治疗的新兴免疫靶点及相关研究进展[J]. 中国肿瘤临床, 2020, 47(19): 1001-1006. doi: 10.3969/j.issn.1000-8179.2020.19.736

    Gao F, Hong YZ, Chen C, et al. Current status of emerging targets for cancer immunotherapy[J]. Zhongguo Zhong Liu Lin Chuang, 2020, 47(19): 1001-1006. doi: 10.3969/j.issn.1000-8179.2020.19.736
    [3]
    Karpathiou G, Chauleur C, Mobarki M, et al. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix[J]. PatholRes Prac, 2019, 216(1): 152782.
    [4]
    Wang SD, Li HY, Li BH, et al. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma[J]. Int Immunopharmacol, 2016, 38: 81-89. doi: 10.1016/j.intimp.2016.05.016
    [5]
    Que Y, Fang Z, Guan Y, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival[J]. Cancer Biol Med, 2019, 16(2): 331-340. doi: 10.20892/j.issn.2095-3941.2018.0306
    [6]
    Datar I, Sanmamed MF, Wang J, et al. Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non-Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis[J]. Clin Cancer Res, 2019, 25(15): 4663-4673. doi: 10.1158/1078-0432.CCR-18-4142
    [7]
    周舸, 谢丽平, 林涛发, 等. 肝细胞癌组织中程序性死亡受体1和T淋巴细胞免疫球蛋白黏蛋白3的表达及意义[J]. 临床肝胆病杂志, 2020, 36(11): 2450-2455. doi: 10.3969/j.issn.1001-5256.2020.11.011

    Zhou G, Xie LP, Lin TF, et al. Expression and significance of programmed death-1 and T-cell immunoglobulin-and mucin domain-3-contai-ning molecule 3 in hepatocellular carcinoma[J]. Lin Chuang Gan Dan Bing Za Zhi, 2020, 36(11): 2450-2455. doi: 10.3969/j.issn.1001-5256.2020.11.011
    [8]
    蓝瑞隆, 傅冷西, 陈瑞庆, 等. 骨肉瘤程序性死亡因子配体1的表达及临床意义[J]. 国际骨科学杂志, 2018, 39(4): 245-249. doi: 10.3969/j.issn.1673-7083.2018.04.012

    Lan RL, Fu LX, Chen RQ, et al. PD-L1 expression in human osteosarcoma and its clinical significance[J]. Guo Ji Gu Ke Xue Za Zhi, 2018, 39(4): 245-249. doi: 10.3969/j.issn.1673-7083.2018.04.012
    [9]
    Toda Y, Kohashi K, Yamada Y, et al. PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2607-2620. doi: 10.1007/s00432-020-03242-6
    [10]
    Zheng W, Xiao H, Liu H, et al. Expression of programmed death 1 is correlated with progression of osteosarcoma[J]. APMIS, 2015, 123(2): 102-107. doi: 10.1111/apm.12311
    [11]
    胡越皓, 鲍其远, 沈宇辉, 等. 程序性死亡受体1及其配体抑制剂治疗骨肉瘤的研究进展[J]. 国际骨科学杂志, 2019, 40(5): 263-267. doi: 10.3969/j.issn.1673-7083.2019.05.002

    Hu YH, Bao QY, Shen YH, et al. Progress in the treatment of osteosarcoma with programmed death receptor 1 and its ligand inhibitors[J]. Guo Ji Gu Ke Xue Za Zhi, 2019, 40: 263-267. doi: 10.3969/j.issn.1673-7083.2019.05.002
    [12]
    Li Y, Liu J, Gao L, et al. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance[J]. Immunol Lett, 2020, 220: 88-96. doi: 10.1016/j.imlet.2019.03.006
    [13]
    Sudo S, Kajiya H, Okano S, et al. Cisplatin-induced programmed cell death ligand-2 expression is associated with metastasis ability in oral squamous cell carcinoma[J]. Cancer Sci, 2020, 111(4): 1113-1123. doi: 10.1111/cas.14336
    [14]
    Verma N, Burns SO, Walker LSK, et al. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations[J]. Clin Exp Immunol, 2017, 190(1): 1-7. doi: 10.1111/cei.12997
    [15]
    Zhang C, Chen J, Song Q, et al. Comprehensive analysis of CTLA-4 in the tumor immune microenvironment of 33 cancer types[J]. Int Immunopharmacol, 2020, 85: 106633. doi: 10.1016/j.intimp.2020.106633
    [16]
    Kawano M, Itonaga I, Iwasaki T, et al. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma[J]. Oncol Rep, 2013, 29(3): 1001-1006. doi: 10.3892/or.2013.2224
    [17]
    Liu Y, Zheng P. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy[J]. Trends Pharmacol Sci, 2019, 41(1): 4-12.
    [18]
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2015, 372(26): 2521-2532. doi: 10.1056/NEJMoa1503093
    [19]
    Patel SP, Othus M, Chae YK, et al. A PhaseⅡ Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors[J]. Clin Cancer Res, 2020, 26(10): 2290-2296. doi: 10.1158/1078-0432.CCR-19-3356
    [20]
    Lussier DM, Johnson JL, Hingorani P, et al. Combination immunotherapy with alpha-CTLA-4 and alpha-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21. doi: 10.1186/s40425-015-0067-z
  • Related Articles

    [1]HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438
    [2]WU Tong, GAO Fei, TENG Fei, ZHANG Qiaoli. Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 42-51. DOI: 10.3971/j.issn.1000-8578.2025.24.0562
    [3]YUAN Chendong, SHU Xufeng, WANG Xiaoqiang, JIE Zhigang. Relationship Between High-Density Lipoprotein Cholesterol and Colorectal Cancer—A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 847-851. DOI: 10.3971/j.issn.1000-8578.2024.24.0153
    [4]GONG Wanli, HOU Yaqi, WANG Yue, LI Yuan, QI Rongxuan, YU Qi, ZHANG Juan. Immune Cell-Mediated Effect of Lipid Profile on Colorectal Cancer: A Two-Step, Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 831-839. DOI: 10.3971/j.issn.1000-8578.2024.24.0284
    [5]LIU Jingting, ZHOU Yawei, KONG Lingguo, WANG Qiandan, SU Tianxiong, PEI Jianying, LI Yan. Causal Association Between Immune Cells and Cervical Cancer: A Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 772-778. DOI: 10.3971/j.issn.1000-8578.2024.24.0037
    [6]WANG Yuanhang, SONG Zhiyuan, LU Ping, ZHANG Min. Analysis of Association Between Immune Cells and Breast Cancer Based on Two-sample Mendelian Randomization Method[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 348-352. DOI: 10.3971/j.issn.1000-8578.2024.23.1125
    [7]LIU Longjiao, YAO Yufeng. Circulating Inflammatory Proteins in Relation to Risk of Breast Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 342-347. DOI: 10.3971/j.issn.1000-8578.2024.23.1344
    [8]WEI Wei, LIU Ming, XU Jianguo, GAO Ya, SHEN Caiyi, TIAN Jinhui. Causal Relationship Between Acromegaly and Colon Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1209-1213. DOI: 10.3971/j.issn.1000-8578.2023.23.0507
    [9]WANG Mengyuan, XU Hengmin, WANG Jingxuan, PAN Kaifeng, LI Wenqing. Mendelian Randomization Analysis of Research on Risk Factors for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 470-476. DOI: 10.3971/j.issn.1000-8578.2023.22.1411
    [10]Xin-ying ZHOU, Hu ZHANG, Hai-yan DAI. Mendelian randomization analysis of the correlation between interleukin and the risk of gynecological tumors[J]. Cancer Research on Prevention and Treatment. DOI: 10.3971/j.issn.1000-8578.20240994
  • Cited by

    Periodical cited type(13)

    1. 吴杨,隋雨桐,李斌鹏,韩路拓,姜家康. 激酶/转录因子信号通路调控肺癌机制及中医药干预的研究进展. 世界中医药. 2025(01): 142-147+154 .
    2. 曹家瑞,冯博,马纯政,陈伟霞,喻江凡,曹莎莎,张振予,欧阳文慧. 中医药调控JAK/STAT信号通路干预肺癌的机制研究进展. 中国实验方剂学杂志. 2025(09): 265-276 .
    3. 梁帅,尹怡,刘湘花,汪保英,骆文龙,龙云凯,任振杰,王祥麒. 升降理肺消瘤汤对Lewis肺癌小鼠免疫炎性反应和JAK2/STAT3信号通路的影响. 辽宁中医药大学学报. 2024(04): 27-32 .
    4. 张彩蝶,靳艳,张德德. 润肺益肾饮对肺癌荷瘤大鼠的抑瘤作用和肿瘤免疫微环境的影响. 天津医药. 2024(04): 362-366 .
    5. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    6. 兰春燕,杨小兰,贺雪峰,赵丹,杨海燕. 甘草苷对胃癌荷瘤小鼠免疫功能的调节作用及机制研究. 中国药房. 2024(15): 1862-1867 .
    7. 张景淇,郭静,陈娅欣,蒲玥衡,向俊杰. 中药调控肺癌相关信号通路研究进展. 中国实验方剂学杂志. 2024(19): 233-244 .
    8. 张孟恩,韩睿,徐超,庞训胜,王世琴. 地顶孢霉培养物在反刍动物生产中的应用研究进展. 中国畜牧杂志. 2024(12): 70-74 .
    9. 高铭,丁美灵,雷紫琴,胡靖文,栾飞,曾南. 荆防败毒散及其中成药制剂研究进展. 中药药理与临床. 2023(05): 112-118 .
    10. 朱亚兰,吕世文,曾晨欣,徐媛青. 苍术素对非小细胞肺癌细胞上皮间质转化的影响及机制研究. 浙江医学. 2023(10): 1013-1018 .
    11. 陈才伟,陈家亮,李华娟,方芳,文方玲. 虫草素调节MAPK/AP-1信号通路对慢性阻塞性肺疾病大鼠肺组织损伤的影响. 临床肺科杂志. 2023(11): 1656-1661 .
    12. 李翔子,王西双,范建伟,杨田野,王丽娟,孙颖,姚景春. 荆防合剂通过抑制JAK2-STAT3信号通路调节荨麻疹小鼠脾脏T淋巴细胞亚群的平衡. 中国中药杂志. 2022(20): 5473-5480 .
    13. 沈栩岚,黄凌霞. 虫草素的抗癌机理. 蚕桑通报. 2022(02): 33-34 .

    Other cited types(4)

Catalog

    Figures(3)  /  Tables(5)

    Article views (1464) PDF downloads (357) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return