Advanced Search
WU Haibing, ZHAO Xiaoyan, SHEN Mingfang, Huang Rui, CHEN Cheng, REN Tao, SHEN Yang. Clinical Application of A New In Vitro High-throughput Drug Sensitivity Screening Technology in Individualized Medication of Relapsed Refractory Acute Myeloid Leukemia Patients[J]. Cancer Research on Prevention and Treatment, 2020, 47(6): 462-465. DOI: 10.3971/j.issn.1000-8578.2020.19.1364
Citation: WU Haibing, ZHAO Xiaoyan, SHEN Mingfang, Huang Rui, CHEN Cheng, REN Tao, SHEN Yang. Clinical Application of A New In Vitro High-throughput Drug Sensitivity Screening Technology in Individualized Medication of Relapsed Refractory Acute Myeloid Leukemia Patients[J]. Cancer Research on Prevention and Treatment, 2020, 47(6): 462-465. DOI: 10.3971/j.issn.1000-8578.2020.19.1364

Clinical Application of A New In Vitro High-throughput Drug Sensitivity Screening Technology in Individualized Medication of Relapsed Refractory Acute Myeloid Leukemia Patients

More Information
  • Corresponding author:

    SHEN Yang, E-mail:13905737152@163.com

  • Received Date: October 31, 2019
  • Revised Date: March 15, 2020
  • Available Online: January 12, 2024
  • Objective 

    To explore the clinical value of new high-throughput drug sensitivity (HDS) screening technology in the individualized medication of relapsed refractory acute myeloid leukemia patients.

    Methods 

    We collected bone marrow samples of 19 patients with relapsed and refractory acute myeloid leukemia, enriching and culturing leukemic cancer cells by HDS technology. In vitro efficacy evaluation of 15 single drugs and 17 chemotherapy regimens was carried out according to the blood peak concentration corresponding to clinical dose. The drugs and programs were divided into four levels: high, medium, low and insensitive, according to the inhibition rate of cell activity detected and calculated by Celltiter-Glo based chemiluminescence, then we observed the clinical remission rate.

    Results 

    Among the 19 patients, there were 4 cases of non-remission (NR), 4 cases of complete remission (CR) and 11cases of partial remission (PR), and the overall remission rate was 78.94%. The sensitivity frequency of DAE, DAC, HAD and HD-DA schemes were higher than 68%.

    Conclusion 

    The high-throughput drug sensitivity screening technology is a rapid, efficient and low-cost detection technology, with good clinical application value in individualized medication of relapsed refractory AML patients, worthy of clinical promotion in the post genomic era.

  • [1]
    Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells[J]. Nature, 2012, 483(7391): 570-575. doi: 10.1038/nature11005
    [2]
    Pemovska T, Kontro M, Yadav B, et al. Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia[J]. Cancer Discov, 2013, 3(12): 1416-1429. doi: 10.1158/2159-8290.CD-13-0350
    [3]
    Crystal AS, Shaw AT, Sequist LV, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer[J]. Science, 2014, 346(6216): 1480-1486. doi: 10.1126/science.1254721
    [4]
    Chia S, Low JL, Zhang X, et al. Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time[J]. Nat Commun, 2017, 8(1): 435. doi: 10.1038/s41467-017-00451-5
    [5]
    Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia[J]. Nature, 2018, 562(7728): 526-531. doi: 10.1038/s41586-018-0623-z
    [6]
    Pemovska T, Kontro M, Yadav B, Edgren H, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia[J]. Cancer Discov, 2013, 3(12): 1416-1429. doi: 10.1158/2159-8290.CD-13-0350
    [7]
    Creutzig U, Kaspers GJ. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia[J]. J Clin Oncol, 2004, 22(16): 3432-3433. doi: 10.1200/JCO.2004.99.116
    [8]
    Marquart J, Chen EY, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Benefit From Genome-Driven Oncology[J]. JAMA Oncol, 2018, 4(8): 1093-1098. doi: 10.1001/jamaoncol.2018.1660
    [9]
    Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261. doi: 10.1038/s41586-019-0987-8
    [10]
    Friedman AA, Letai A, Fisher DE, et al. Precision medicine for cancer with next-generation functional diagnostics[J]. Nat Rev Cancer, 2015, 15(12): 747-756. doi: 10.1038/nrc4015
    [11]
    Yan X, Zhou L, Wu Z, et al. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing[J]. Biomaterials, 2019, 198: 167-179. doi: 10.1016/j.biomaterials.2018.05.020
    [12]
    朱路, 勾越阳, 鄢晓君, 等.基于病人自体肿瘤细胞体外培养模型的个体化精准用药[J].中国医疗设备, 2016, 31(6): 13-18, 35. doi: 10.3969/j.issn.1674-1633.2016.06.003

    Zhu L, Gou YY, Yan XJ, et al. Precise medicine in cancer treatmentvia patient derivedin vitro tumor model[J]. Zhongguo Yi Liao She Bei, 2016, 31(6): 13-18, 35. doi: 10.3969/j.issn.1674-1633.2016.06.003
    [13]
    刘飞扬, 黄瑞, 任涛, 等.肿瘤精准用药治疗的技术体系[J].高科技与产业化, 2016, 242: 50-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjycyh201607007

    Liu FY, Huang R, Ren T, et al. Technology system of cancer Precision medicine[J]. Gao Ke Ji Yu Chan Ye Hua, 2016, 242: 50-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjycyh201607007
    [14]
    Liu X, Ory V, Chapman S, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells[J]. Am J Pathol, 2012, 180(2): 599-607. doi: 10.1016/j.ajpath.2011.10.036
    [15]
    Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia[J]. Int J Mol Sci, 2019, 20(2). pii: E453. doi: 10.3390/ijms20020453
    [16]
    Mazzocchi AR, Rajan SAP, Votanopoulos KI, et al. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening[J]. Sci Rep, 2018, 8(1): 2886. doi: 10.1038/s41598-018-21200-8
  • Related Articles

    [1]HE Jiawei, CAO Longnyu, TANG Mengyuan, CUI Hongquan. Causal Relationships Between Immune Cells and Risk of Gastric Cancer: A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 172-176. DOI: 10.3971/j.issn.1000-8578.2025.24.0438
    [2]WU Tong, GAO Fei, TENG Fei, ZHANG Qiaoli. Genetic Determinants of Immune Cells and Hepatocellular Carcinoma Risk: A Bioinformatics and Bidirectional Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 42-51. DOI: 10.3971/j.issn.1000-8578.2025.24.0562
    [3]YUAN Chendong, SHU Xufeng, WANG Xiaoqiang, JIE Zhigang. Relationship Between High-Density Lipoprotein Cholesterol and Colorectal Cancer—A Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 847-851. DOI: 10.3971/j.issn.1000-8578.2024.24.0153
    [4]GONG Wanli, HOU Yaqi, WANG Yue, LI Yuan, QI Rongxuan, YU Qi, ZHANG Juan. Immune Cell-Mediated Effect of Lipid Profile on Colorectal Cancer: A Two-Step, Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 831-839. DOI: 10.3971/j.issn.1000-8578.2024.24.0284
    [5]LIU Jingting, ZHOU Yawei, KONG Lingguo, WANG Qiandan, SU Tianxiong, PEI Jianying, LI Yan. Causal Association Between Immune Cells and Cervical Cancer: A Two-Sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 772-778. DOI: 10.3971/j.issn.1000-8578.2024.24.0037
    [6]WANG Yuanhang, SONG Zhiyuan, LU Ping, ZHANG Min. Analysis of Association Between Immune Cells and Breast Cancer Based on Two-sample Mendelian Randomization Method[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 348-352. DOI: 10.3971/j.issn.1000-8578.2024.23.1125
    [7]LIU Longjiao, YAO Yufeng. Circulating Inflammatory Proteins in Relation to Risk of Breast Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 342-347. DOI: 10.3971/j.issn.1000-8578.2024.23.1344
    [8]WEI Wei, LIU Ming, XU Jianguo, GAO Ya, SHEN Caiyi, TIAN Jinhui. Causal Relationship Between Acromegaly and Colon Cancer: A Two-sample Mendelian Randomization Study[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1209-1213. DOI: 10.3971/j.issn.1000-8578.2023.23.0507
    [9]WANG Mengyuan, XU Hengmin, WANG Jingxuan, PAN Kaifeng, LI Wenqing. Mendelian Randomization Analysis of Research on Risk Factors for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 470-476. DOI: 10.3971/j.issn.1000-8578.2023.22.1411
    [10]Xin-ying ZHOU, Hu ZHANG, Hai-yan DAI. Mendelian randomization analysis of the correlation between interleukin and the risk of gynecological tumors[J]. Cancer Research on Prevention and Treatment. DOI: 10.3971/j.issn.1000-8578.20240994
  • Cited by

    Periodical cited type(13)

    1. 吴杨,隋雨桐,李斌鹏,韩路拓,姜家康. 激酶/转录因子信号通路调控肺癌机制及中医药干预的研究进展. 世界中医药. 2025(01): 142-147+154 .
    2. 曹家瑞,冯博,马纯政,陈伟霞,喻江凡,曹莎莎,张振予,欧阳文慧. 中医药调控JAK/STAT信号通路干预肺癌的机制研究进展. 中国实验方剂学杂志. 2025(09): 265-276 .
    3. 梁帅,尹怡,刘湘花,汪保英,骆文龙,龙云凯,任振杰,王祥麒. 升降理肺消瘤汤对Lewis肺癌小鼠免疫炎性反应和JAK2/STAT3信号通路的影响. 辽宁中医药大学学报. 2024(04): 27-32 .
    4. 张彩蝶,靳艳,张德德. 润肺益肾饮对肺癌荷瘤大鼠的抑瘤作用和肿瘤免疫微环境的影响. 天津医药. 2024(04): 362-366 .
    5. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    6. 兰春燕,杨小兰,贺雪峰,赵丹,杨海燕. 甘草苷对胃癌荷瘤小鼠免疫功能的调节作用及机制研究. 中国药房. 2024(15): 1862-1867 .
    7. 张景淇,郭静,陈娅欣,蒲玥衡,向俊杰. 中药调控肺癌相关信号通路研究进展. 中国实验方剂学杂志. 2024(19): 233-244 .
    8. 张孟恩,韩睿,徐超,庞训胜,王世琴. 地顶孢霉培养物在反刍动物生产中的应用研究进展. 中国畜牧杂志. 2024(12): 70-74 .
    9. 高铭,丁美灵,雷紫琴,胡靖文,栾飞,曾南. 荆防败毒散及其中成药制剂研究进展. 中药药理与临床. 2023(05): 112-118 .
    10. 朱亚兰,吕世文,曾晨欣,徐媛青. 苍术素对非小细胞肺癌细胞上皮间质转化的影响及机制研究. 浙江医学. 2023(10): 1013-1018 .
    11. 陈才伟,陈家亮,李华娟,方芳,文方玲. 虫草素调节MAPK/AP-1信号通路对慢性阻塞性肺疾病大鼠肺组织损伤的影响. 临床肺科杂志. 2023(11): 1656-1661 .
    12. 李翔子,王西双,范建伟,杨田野,王丽娟,孙颖,姚景春. 荆防合剂通过抑制JAK2-STAT3信号通路调节荨麻疹小鼠脾脏T淋巴细胞亚群的平衡. 中国中药杂志. 2022(20): 5473-5480 .
    13. 沈栩岚,黄凌霞. 虫草素的抗癌机理. 蚕桑通报. 2022(02): 33-34 .

    Other cited types(4)

Catalog

    Article views (1770) PDF downloads (403) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return