Advanced Search
XU Weili, YYANG Xiaofeng, LI Meng, ZHOU Hui, LI Suolin. yeloid-derived Suppressor Cells Inhibit Proliferation and Killing Activity of Neuroblastoma Antigen-specific Cytotoxic T Lymphocyte in vitro[J]. Cancer Research on Prevention and Treatment, 2017, 44(11): 728-732. DOI: 10.3971/j.issn.1000-8578.2017.17.0709
Citation: XU Weili, YYANG Xiaofeng, LI Meng, ZHOU Hui, LI Suolin. yeloid-derived Suppressor Cells Inhibit Proliferation and Killing Activity of Neuroblastoma Antigen-specific Cytotoxic T Lymphocyte in vitro[J]. Cancer Research on Prevention and Treatment, 2017, 44(11): 728-732. DOI: 10.3971/j.issn.1000-8578.2017.17.0709

yeloid-derived Suppressor Cells Inhibit Proliferation and Killing Activity of Neuroblastoma Antigen-specific Cytotoxic T Lymphocyte in vitro

More Information
  • Received Date: June 20, 2017
  • Revised Date: September 25, 2017
  • Available Online: January 12, 2024
  • Objective 

    To explore the inhibitory role of myeloid-derived suppressor cell (MDSC) in the proliferation and killing activity of neuroblastoma antigen-specific cytotoxic T lymphocyte (CTL) in vitro.

    Methods 

    The neuroblastoma antigen specific CTLs were successfully prepared on the basis of cultivation of neuroblastoma SK-N-SH cells and separation of BALB/c mice myeloid-derived dendritic cell (DC) and CD3+T cells in vitro. MDSCs were purified and cultivated with CTLs, then the inhibitory role of MDSC in the proliferation of CTL was detected by fluorescence staining of 5, 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) and flow cytometry. Furthermore, CTL, SK-N-SH and MDSC were mixed and cultivated, the killing rate of CTL on SK-N-SH and the secretion of IL-2, IFN-γ in supernatant of the different groups were detected by ELISA.

    Results 

    After magnetic cell sorting, the rate of Gr-1+CD11b+MDSC reached to 84.6% by flow cytometry test. The levels of IL-2 and IFN-γ in supernatant of antigen-loaded CTLs were significantly higher than those in supernatant of T cells (P < 0.05). The proliferation of CTLs cultivated with MDSC was significantly inhibited, with strong fluorescence in view: however, CTLs cultivated alone proliferated obviously, with weak fluorescence intensity. The killing rate of CTLs to SK-N-SH in MDSC+CTL+SK-N-SH group was significant lower than that in CTL+SK-N-SH group (t=6.506, P < 0.001). Significant difference existed in the secretion levels of IL-2 and IFN-γ in the supernatant between the two groups (all P < 0.01).

    Conclusion 

    MDSC inhibite the proliferation and activity of neuroblastoma antigen-specific CTLs in vitro result in immune tolerance and reduced the killing effect of CTL on neuroblastoma cells.

  • [1]
    侯渊涛, 刘璐, 王常林.神经母细胞瘤的免疫学治疗进展[J].临床小儿外科杂志, 2011, 10(4): 290-3. http://d.wanfangdata.com.cn/Periodical/lcxewkzz201104020

    Hou YT, Liu L, Wang CL. Advances in immunotherapy of neuroblastoma[J]. Lin Chuang Xiao Er Wai Ke Za Zhi, 2011, 10(4): 290-3. http://d.wanfangdata.com.cn/Periodical/lcxewkzz201104020
    [2]
    Seeger RC. Immunology and immunotherapy of neuroblastoma[J]. Semin Cancer Biol, 2011, 21(4): 229-37. doi: 10.1016/j.semcancer.2011.09.012
    [3]
    Pistoia V, Morandi F, Bianchi G, et al. Immunosuppressive microenvironment in neuroblastoma[J]. Front Oncol, 2013, 3: 167. http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1dc1030e2ffd9722fda191e0f1a982b4
    [4]
    Long AH, Highfill SL, Cui Y, et al. Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas[J]. Cancer Immunol Res, 2016, 4(10): 869-80. doi: 10.1158/2326-6066.CIR-15-0230
    [5]
    Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumourmicroenvironment[J]. J Pathol, 2017, 241(3): 313-5. doi: 10.1002/path.4824
    [6]
    Jales A, Falahati R, Mari E, et al. Ganglioside-exposed dendritic cells inhibit T-cell effector function by promoting regulatory cell activity[J]. Immunology, 2011, 132(1): 134-43. doi: 10.1111/j.1365-2567.2010.03348.x
    [7]
    Xu W, Cai J, Li S, et al. Improving the in vivo persistence, distribution and function of cytotoxic T lymphocytes by inhibiting the tumor immunosuppressive microenvironment[J]. Scand J Immunol, 2013, 78(1): 50-60. doi: 10.1111/sji.2013.78.issue-1
    [8]
    Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy[J]. Nat Rev Cancer, 2013, 13(6): 397-411. doi: 10.1038/nrc3526
    [9]
    Gabrilovich DI. Myeloid-Derived Suppressor Cells[J]. Cancer Immunol Res, 2017, 5(1): 3-8. doi: 10.1158/2326-6066.CIR-16-0297
    [10]
    Chen J, Ye Y, Liu P, et al. Suppression of T cells by myeloid-derived suppressor cells in cancer[J]. Hum Immunol, 2017, 78(2): 113-9. doi: 10.1016/j.humimm.2016.12.001
    [11]
    Jordan KR, Kapoor P, Spongberg E, et al. Immunosupp-ressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients[J]. Cancer Immunol Immunother, 2017, 66(4): 503-13. doi: 10.1007/s00262-016-1953-z
    [12]
    Hassin D, Garber OG, Meiraz A, et al. Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when Fas ligand lytic action is still not detectable[J]. Immunology, 2011, 133(2): 190-6. doi: 10.1111/imm.2011.133.issue-2
    [13]
    Martínez-Lostao L, Anel A, Pardo J. How Do Cytotoxic Lymphocytes Kill Cancer Cells?[J]. Clin Cancer Res, 2015, 21(22): 5047-56. doi: 10.1158/1078-0432.CCR-15-0685
    [14]
    Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology[J]. Nat Rev Immunol, 2015, 15(6): 388-400. doi: 10.1038/nri3839
    [15]
    Kumar R, Avagyan S, Snoeck HW. A quantitative trait locus on chr.4 regulates thymic involution[J]. J Gerontol A Biol Sci Med Sci, 2010, 65(6): 620-5. http://d.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2904592
    [16]
    Lustig A, Carter A, Bertak D, et al. Transcriptome analysis of murine thymocytes reveals age-associated changes in thymic gene expression[J]. Int J Med Sci, 2009, 6(1): 51-64. http://d.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2640475
  • Related Articles

    [1]DAI Nan, ZHAO Xiaolong, DAI Xiaoyan, LI Mengxia. Effect of Exosomal APE1 on Sensitivity of NSCLC A549 Cells to Cisplatin[J]. Cancer Research on Prevention and Treatment, 2020, 47(7): 492-497. DOI: 10.3971/j.issn.1000-8578.2020.19.1609
    [2]HUANG Zejian, FANG Chang, YU Baodan, CHENG Qing, LYU Ping. 3E10 Targeting CD24 Enhances Chemotherapy Sensitivity of Hepatocellular Carcinoma HuH-7 Cells[J]. Cancer Research on Prevention and Treatment, 2018, 45(8): 540-544. DOI: 10.3971/j.issn.1000-8578.2018.17.1484
    [3]CAI Rui, CHEN Qiuqiu, JIANG Wei. 5-azacytidine Increases Radiation Sensitivity of Nasopharyngeal Carcinoma Cell Line C666-1[J]. Cancer Research on Prevention and Treatment, 2017, 44(2): 94-97. DOI: 10.3971/j.issn.1000-8578.2017.02.003
    [4]ZHANG Juping, SHI Yehui, JIA Yongsheng, ZHOU Liyan, TONG Zhongsheng. GDF11 is Involved in Human Hepatic Carcinoma Cells SMMC-7721 Proliferation and Sensitivity to DDP[J]. Cancer Research on Prevention and Treatment, 2016, 43(6): 459-462. DOI: 10.3971/j.issn.1000-8578.2016.06.005
    [5]LI Wei, PENG Junqin, LI Jiansheng, TANG Rijie. MR Apparent Diffusion Coefficient Predicts Sensitivity of Nasopharyngeal Carcinoma to Radiotherapy and Related Factors[J]. Cancer Research on Prevention and Treatment, 2015, 42(12): 1221-1226. DOI: 10.3971/j.issn.1000-8578.2015.12.011
    [6]HU Lili, YIN Yanjun, ZHONG Wenjuan, QIU Feng. miR-200c Enhances Sensitivity of Lung Cancer Cell A549 to Paclitaxel and Gefitinib and Related Mechanism[J]. Cancer Research on Prevention and Treatment, 2015, 42(08): 760-764. DOI: 10.3971/j.issn.1000-8578.2015.08.003
    [7]CAO Xinmei, ZHANG Daiquan, XIA Jiyi, WANG Xu, GAO Yan, XIONG Wei. Effects of HER2 shRNA on Chemotherapy Sensitivity of Mouse Lewis Cells[J]. Cancer Research on Prevention and Treatment, 2014, 41(05): 366-368. DOI: 10.3971/j.issn.1000-8578.2014.05.004
    [8]Yang Qingshan, Liu Yuanyuan, Jiang Lipeng. Effect of Expression Vector of Human BAG-1 Gene on Radio-sensitivity of Lung Adenocarcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2012, 39(02): 127-129. DOI: 10.3971/j.issn.1000-8578.2012.02.002
    [9]FANG Chuan, TAN Yan-li, WANG Jia-liang, SHI Yan-fang, SHAN Xiao-song, LI Wei. Primary Culture and Drug Sensitivity of Human Glioma Cells[J]. Cancer Research on Prevention and Treatment, 2010, 37(12): 1380-1382. DOI: 10.3971/j.issn.1000-8578.2010.12.012
    [10]ZHANG Wei, GU Min. Geldanamycin Sensitizes Human Breast Cancer Cells to Adriamycin both in vitro and in vivo[J]. Cancer Research on Prevention and Treatment, 2010, 37(10): 1109-1112. DOI: 10.3971/j.issn.1000-8578.2010.10.004
  • Cited by

    Periodical cited type(9)

    1. 成俊,徐雪峰,李伟. D-CBCT在肺癌容积旋转调强计划精准治疗中的临床应用. 中国CT和MRI杂志. 2024(04): 35-37 .
    2. 蒋浩,曹新超,吴桐,郭志斌. 低剂量CT联合外周血循环肿瘤细胞在肺癌早期诊断中的价值研究. 中国CT和MRI杂志. 2024(06): 57-60 .
    3. 王晶,翟成凯. 肿瘤自身抗体及CT人工智能在NSCLC早期诊断中的应用研究进展. 解放军医学杂志. 2024(07): 848-854 .
    4. 李雪娇. 多排螺旋CT低剂量胸部扫描在肺癌早期筛查中的应用价值分析. 医药前沿. 2024(15): 79-81 .
    5. 易梅玲,易芳玲. 双层探测器光谱CT智能剂量调控技术在低剂量胸部体检中的应用价值. 中国医疗器械信息. 2024(22): 8-10+81 .
    6. 杏子,彭源. 低剂量CT在肺癌筛查中的价值. 中国防痨杂志. 2024(S2): 234-236 .
    7. 陈蔚,蒋伟. 低剂量螺旋CT扫描用于肺癌筛查及鉴别的效果评估. 深圳中西医结合杂志. 2023(01): 71-73 .
    8. 慕珂珂,肖凌云,董炎红. 早期肺癌患者血清和胸腔积液中CYFRA211、NSE及SCC水平变化及意义. 中国实用医刊. 2023(09): 34-37 .
    9. 陈彪. 低剂量螺旋CT联合血清肿瘤标志物在肺癌诊断中的临床应用价值. 影像研究与医学应用. 2023(22): 24-26 .

    Other cited types(1)

Catalog

    Article views (1313) PDF downloads (637) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return