Citation: | TAN Wenfu, YANG Juntao, XIA Xue, XIANG Renkun, WANG Xiaoxu. PKM2 Expression and Elevated CD163 in Macrophage Synergistically Promote Osteosarcoma Progression[J]. Cancer Research on Prevention and Treatment, 2019, 46(12): 1101-1106. DOI: 10.3971/j.issn.1000-8578.2019.19.0453 |
To investigate the relation between PKM2 and related pathological features of osteosarcoma, to further explore the markers for predicting the prognosis of osteosarcoma patients.
We collected 88 cases of paraffin-embedded primary osteosarcoma specimens, and the specimens were constructed by tissue microarray. Serial sections were used to detect the expression of PKM2 in the above tissues by immunohistochemistry. Kaplan-Meier analysis was used to demonstrate the prognostic value. Correlation analysis between parameters and patient's prognosis was performed using Cox regression model.
M2 macrophage-specific marker CD163 was elevated in osteosarcoma matrix, suggesting that M2 macrophages were densely infiltrated in osteosarcoma. PKM2 overexpression is positively correlated with M2 macrophage infiltration in osteosarcoma.
PKM2 overexpression and M2 macrophage infiltration were influence factors for patients' poor prognosis.
[1] |
He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma (Review) [J]. Oncol Lett, 2014, 7(5): 1352-1362. doi: 10.3892/ol.2014.1935
|
[2] |
Zhang K, Zhang Y, Zhu H, et al. High expression of MACC1 predicts poor prognosis in patients with osteosarcoma[J]. Tumor Biol, 2014, 35(2): 1343-1350. doi: 10.1007/s13277-013-1180-6
|
[3] |
Kansara M, Teng MW, Smyth MJ, et al. Translational biology of osteosarcoma[J]. Nat Rev Cancer, 2014, 14(11): 722-735. doi: 10.1038/nrc3838
|
[4] |
Wang G, Zhang Z, Yang M, et al. Comparative proteomics analysis of human osteosarcoma by 2D DIGE with MALDI-TOF/TOF MS[J]. J Bone Oncol, 2016, 5(4): 147-152. doi: 10.1016/j.jbo.2016.05.002
|
[5] |
Ferrari S, Perut F, Fagioli F, et al. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients' bed[J]. J Transl Med, 2013, 11: 268. doi: 10.1186/1479-5876-11-268
|
[6] |
Tu B, Peng ZX, Fan QM, et al. Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway[J]. Exp Cell Res, 2014, 320(1): 164-173. doi: 10.1016/j.yexcr.2013.10.013
|
[7] |
Alfranca A, Martinez-Cruzado L, Tornin J, et al. Bone microenvironment signals in osteosarcoma development[J]. Cell Mol Life Sci, 2015, 72(16): 3097-3113. doi: 10.1007/s00018-015-1918-y
|
[8] |
Ouellet V, Siegel PM. CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis[J]. J Cell Commun Signal, 2012, 6(2): 73-85. doi: 10.1007/s12079-012-0161-7
|
[9] |
Rubio R, Abarrategi A, Garcia-Castro J, et al. Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells[J]. Stem Cells, 2014, 32(5): 1136-1148. doi: 10.1002/stem.1647
|
[10] |
Endo-Munoz L, Evdokiou A, Saunders NA. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis[J]. Biochim Biophys Acta, 2012, 1826(2): 434-442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=769ae3230401990e0896caff6682ab60
|
[11] |
Hu H, Jiao F, Han T, et al. Functional significance of macrophages in pancreatic cancer biology[J]. Tumour Biol, 2015, 36(12): 9119-9126. doi: 10.1007/s13277-015-4127-2
|
[12] |
Pahl JH, Kwappenberg KM, Varypataki EM, et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-gamma[J]. J Exp Clin Cancer Res, 2014, 33: 27. doi: 10.1186/1756-9966-33-27
|
[13] |
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. doi: 10.1038/nature13490
|
[14] |
Liu ZX, Hong L, Fang SQ, et al. Overexpression of pyruvate kinase M2 predicts a poor prognosis for patients with osteosarcoma[J]. Tumour Biol, 2016, 37(11): 14923-14928. doi: 10.1007/s13277-016-5401-7
|
[15] |
Asgari Y, Zabihinpour Z, Salehzadeh-Yazdi A, et al. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation[J]. Genomics, 2015, 105(5-6): 275-281. doi: 10.1016/j.ygeno.2015.03.001
|
[16] |
Gillies RJ, Gatenby RA. Metabolism and its sequelae in cancer evolution and therapy[J]. Cancer J, 2015, 21(2): 88-96. doi: 10.1097/PPO.0000000000000102
|
[17] |
Zhang X, He C, He C, et al. Nuclear PKM2 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma[J]. Pathol Res Pract, 2013, 209(8): 510-515. doi: 10.1016/j.prp.2013.06.005
|
[18] |
Li J, Yang Z, Zou Q, et al. PKM2 and ACVR 1C are prognostic markers for poor prognosis of gallbladder cancer[J]. Clin Transl Oncol, 2014, 16(2): 200-207. doi: 10.1007/s12094-013-1063-8
|
[19] |
Wong N, Ojo D, Yan J, et al. PKM2 contributes to cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A): 184-191. http://cn.bing.com/academic/profile?id=e4fb25b2fdd10e044d3183422d899b01&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Morfouace M, Lalier L, Oliver L, et al. Control of glioma cell death and differentiation by PKM2-Oct4 interaction[J]. Cell Death Dis, 2014, 5: e1036. doi: 10.1038/cddis.2013.561
|
[21] |
Hamabe A, Konno M, Tanuma N, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition[J]. Proc Natl Acad Sci U S A, 2014, 111(43): 15526-15531. doi: 10.1073/pnas.1407717111
|