高级搜索

缩氨基硫脲类化合物DpC抗头颈肿瘤活性的体外研究

陶泽璋, 喻迪, 王鹏举, 陈晨, 李芬

陶泽璋, 喻迪, 王鹏举, 陈晨, 李芬. 缩氨基硫脲类化合物DpC抗头颈肿瘤活性的体外研究[J]. 肿瘤防治研究, 2016, 43(2): 106-111. DOI: 10.3971/j.issn.1000-8578.2016.02.003
引用本文: 陶泽璋, 喻迪, 王鹏举, 陈晨, 李芬. 缩氨基硫脲类化合物DpC抗头颈肿瘤活性的体外研究[J]. 肿瘤防治研究, 2016, 43(2): 106-111. DOI: 10.3971/j.issn.1000-8578.2016.02.003
TAO Zezhang, YU Di, WANG Pengju, CHEN Chen, LI Fen. In vitro Investigation of Antitumor Efficacy of DpC on Head and Neck Cancer[J]. Cancer Research on Prevention and Treatment, 2016, 43(2): 106-111. DOI: 10.3971/j.issn.1000-8578.2016.02.003
Citation: TAO Zezhang, YU Di, WANG Pengju, CHEN Chen, LI Fen. In vitro Investigation of Antitumor Efficacy of DpC on Head and Neck Cancer[J]. Cancer Research on Prevention and Treatment, 2016, 43(2): 106-111. DOI: 10.3971/j.issn.1000-8578.2016.02.003

缩氨基硫脲类化合物DpC抗头颈肿瘤活性的体外研究

详细信息
    作者简介:

    陶泽璋(1954-),男,博士,主任医师,主要从事耳鼻喉头颈外科学研究

    通讯作者:

    王鹏举,E-mail: wangpju@163.com

  • 中图分类号: R739.65

In vitro Investigation of Antitumor Efficacy of DpC on Head and Neck Cancer

  • 摘要: 目的 比较缩氨基硫脲类化合物DpC与Dp44mT的体外抗头颈肿瘤(HNC)活性,并探讨DpC的作用机制。方法 采用CCK-8法测定DpC与Dp44mT对头颈部鳞状细胞癌FaDu、Cal-27、SCC-9等细胞系增殖能力的影响;应用流式细胞仪技术检测DpC与Dp44mT对FaDu、Cal-27、SCC-9细胞干预之后,细胞凋亡的变化。Western blot观察DpC对舌鳞癌细胞Cal-27的干预机制。 结果 DpC与Dp44mT对头颈肿瘤细胞有明显的抑制作用,其半数抑制率(IC50) 分别为FaDu细胞3.93 μmol/L与24.37 μmol/L、Cal-27细胞2.79 μmol/L与15.15 μmol/L、SCC-9细胞15.61 μmol/L与95.36 μmol/L;DpC与Dp44mT均用浓度0、2.5、5、7.5 μmol/L干预头颈肿瘤细胞后,随着作用浓度的增加,凋亡逐渐增加,其凋亡率分别为Cal-27细胞3.5%、15.8%、28.4%、39.8%与3.5%、18.3%、26.8%、26.1%,SCC-9细胞4.1%、10.7%、22.3%、28.9%与3.8%、7.2%、15.1%、22.4%;FaDu细胞4.2%、8.9%、17.1%、18.5%与4.2%、8.0%、14.4%、20.0%;在Cal-27细胞系中,DpC上调了DNA损伤相关通路蛋白,如p-ATM、p-Chk-1、p-ATR、p-Chk-2、P-Histone H2A.X、PARP、BRCA1、p-P53。 结论 DpC和Dp44mT均可抑制头颈肿瘤细胞的增殖和促进其凋亡,且DpC的抑制增殖和促进凋亡能力明显优于Dp44mT,其中DpC的抗头颈肿瘤活性主要通过DNA损伤途径来实现。

     

    Abstract: Objective To investigate the antitumor efficacy of DpC on head and neck cancer (HNC) cells compared with Dp44mT, and to further investigate the mechanism of DpC on tongue squamous carcinoma cells Cal-27. Methods CCK-8 assay was used to detect whether DpC could inhibit the proliferation of FaDu, Cal-27 and SCC-9 cells compared with Dp44mT; Annexin V-PI double staining was performed to detect the apoptosis proportion of FaDu, Cal-27 and SCC-9 cells treated with DpC and Dp44mT, then we used flow cytometry to detect the apoptosis; The mechanism of DpC on tongue squamous cell carcinoma cells Cal-27 was evaluated by Western blot. Results CCK-8 assay showed that DpC and Dp44mT significantly inhibited the proliferation of FaDu, Cal-27, SCC-9 cells in a concentration-dependent manner; the IC50 were 3.93 and 24.37μmol/L, 2.79 and 15.15μmol/L, 15.61 and 95.36μmol/L, respectively; flow cytometry showed that the proportion of apoptotic cells was gradually increased in a dose-dependent manner induced by DpC and Dp44mT (0, 2.5, 5, 7.5 μmol/L): and the apoptosis rates of HNC cells induced by DpC were significantly higher than those by Dp44mT: Cal-27 cells (Dp44mT:3.5%, 18.3%, 26.8%, 26.1%;DpC:3.5%, 15.8%, 28.4%, 39.8%),SCC-9 cells (Dp44mT:3.8%, 7.2%, 15.1%, 22.4%;DpC:4.1%, 10.7%, 22.3%, 28.9%),FaDu cells (Dp44mT:4.2%,8.0%,14.4%,20.0%;DpC:4.2%, 8.9%, 17.1%, 18.5%);Western blot showed that the expression of DNA damage related proteins, such as p-ATM, p-Chk-1, p-ATR, p-Chk-2, P-Histone H2AX, PARP, BRCA1, p-P53, were up-regulated with increased DpC concentration in Cal-27 cells. Conclusion DpC and Dp44mT could inhibit the proliferation and promote the apoptosis of HNC cells, and DpC has better antitumor efficacy than Dp44mT. Furthermore, the process may be associated with DNA damage.

     

  • [1] D’cruz A, Lin T, Anand AK, et al. Consensus recommendations for management of head and neck cancer in Asian countries: a review of international guidelines[J]. Oral Oncol, 2013, 49(9): 872-7.
    [2] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
    [3] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-86.
    [4] Padmanabhan H, Brookes MJ, Iqbal T. Iron and colorectal cancer: evidence from in vitro and animal studies[J]. Nutr Rev, 2015, 73 (5): 308-17.
    [5] Gibbons JA, Kanwar JR, Kanwar RK. Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer[J]. BMC Cancer, 2015, 15: 425.
    [6] Miljuš G, Malenkovi? V, ?ukanovi? B, et al. IGFBP-3/transferrin/ transferrin receptor 1 complexes as principal mediators of IGFBP-3 delivery to colon cells in non-cancer and cancer tissues[J]. Exp Mol Pathol, 2015, 98(3): 431-8.
    [7] Dragset MS, Poce G, Alfonso S, et al. A novel antimycobacterial compound acts as an intracellular iron chelator[J]. Antimicrob Agents Chemother, 2015, 59(4): 2256-64.
    [8] Fang BA, Kova?evi? ?, Park KC, et al. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy[J]. Biochim Biophys Acta, 20 14, 1845(1): 1-19.
    [9] Quach P, Gutierrez E, Basha MT, et al. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect[J]. Mol Pharmacol, 2012, 82(1): 105-14.
    [10] Merlot AM, Sahni S, Lane DJ, et al. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells[J]. Oncotarget, 2015, 6(12): 10374-98.
    [11] Gutierrez E, Richardson DR, Jansson PJ. The anticancer agent di- 2- pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: persistent induction of autophagosome synthesis and impairment of lysosomal integrity[J]. J Biol Chem, 2014, 289(48): 33568-89.
    [12] Lovejoy DB, Sharp DM, Seebacher N, et al. Novel secondgeneration di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstratepotent activity against lung cancer xenografts after oral and intravenous administration in vivo[J]. J Med Chem, 2012, 55(16): 72 30-44.
    [13] Quach P, Gutierrez E, Basha MT, et al. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect[J]. Mol Pharmacol, 2012, 82(1): 105-14.
    [14] Pahontu E, Julea F, Rosu T, et al. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones[J]. J Cell Mol Med, 2015, 19(4): 865-78.
    [15] Zhu TH, Cao SW, Yu YY. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors[J]. Int J Biol Macromol, 2013, 62: 589-95.
    [16] Zhang N, Tai Y, Li M, et al. Main group bismuth(Ⅲ), gallium(Ⅲ) and diorganotin(Ⅳ) complexes derived from bis(2- acetylpyrazine)thiocarbonohydrazone: synthesis, crystal structures and biological evaluation[J]. Dalton Trans, 2014, 43(13): 5182-9.
    [17] Richardson DR, Sharpe PC, Lovejoy DB, et al. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity[J]. J Med Chem, 20 06, 49(22): 6510-21.
    [18] Ma B, Goh BC, Tan EH, et al. A multicenter phaseⅡtrial of 3- aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells[J]. Invest New Drugs, 2008, 26(2): 169-73.
    [19] Lovejoy DB, Jansson PJ, Brunk UT, et al. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes[J]. Cancer Res, 2011, 71(17): 5871-80.
    [20] Kovacevic Z, Chikhani S, Lovejoy DB, et al. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer[J]. Mol Pharmacol, 2011, 80(4): 598-609.
    [21] Han Y, Chen DX, Guo HL. Advances in DNA damage response[J]. Zhonghau Zhong Liu Fang Zhi Za Zhi, 2013, 20(22): 1775-8. [韩 悦, 陈德喜, 郭洪亮. DNA损伤应答通路研究现状[J]. 中华肿瘤 防治杂志, 2013, 20(22): 1775-8. ]
    [22] Mohni KN, Thompson PS, Luzwick JW, et al. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments[J]. PLoS One, 2015, 10(5): e0125482.
    [23] Park JS, Na HJ, Jeon JH, et al. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila[J]. Aging (Albany NY), 2015, 7(5): 307-18.
    [24] Demoulin B, Hermant M, Castrogiovanni C, et al. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomeraseⅡand activates the ATM kinase to trigger p53- dependent apoptosis[J]. Toxicol In Vitro, 2015, 29(5): 1156-65.
    [25] Chen Z, Zhou Q, Zou D, et al. Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli[J]. Chemosphere, 2015, 135: 379-86.
    [26] Melis JP, van Steeg H, Luijten M. Oxidative DNA damage and nucleotide excision repair[J]. Antioxid Redox Signal, 2013, 18 (18): 2409-19.
    [27] Tang S, Hou Y, Zhang H, et al. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-beta-catenin signaling pathways[J]. Cell Cycle, 2015, 14(12): 19 08-24.
    [28] Inobe T, Nozaki M, Nukina N. Artificial regulation of p53 function by modulating its assembly[J]. Biochem Biophys Res Commun, 20 15, 467(2): 322-7.
    [29] Wong FC, Ng AW, Lee VH, et al. Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 20 10, 76(1): 138-45.
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  358
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-07
  • 修回日期:  2015-12-23
  • 刊出日期:  2016-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭