[1] |
D’cruz A, Lin T, Anand AK, et al. Consensus recommendations for management of head and neck cancer in Asian countries: a review of international guidelines[J]. Oral Oncol, 2013, 49(9): 872-7.
|
[2] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
|
[3] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-86.
|
[4] |
Padmanabhan H, Brookes MJ, Iqbal T. Iron and colorectal cancer: evidence from in vitro and animal studies[J]. Nutr Rev, 2015, 73 (5): 308-17.
|
[5] |
Gibbons JA, Kanwar JR, Kanwar RK. Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer[J]. BMC Cancer, 2015, 15: 425.
|
[6] |
Miljuš G, Malenkovi? V, ?ukanovi? B, et al. IGFBP-3/transferrin/ transferrin receptor 1 complexes as principal mediators of IGFBP-3 delivery to colon cells in non-cancer and cancer tissues[J]. Exp Mol Pathol, 2015, 98(3): 431-8.
|
[7] |
Dragset MS, Poce G, Alfonso S, et al. A novel antimycobacterial compound acts as an intracellular iron chelator[J]. Antimicrob Agents Chemother, 2015, 59(4): 2256-64.
|
[8] |
Fang BA, Kova?evi? ?, Park KC, et al. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy[J]. Biochim Biophys Acta, 20 14, 1845(1): 1-19.
|
[9] |
Quach P, Gutierrez E, Basha MT, et al. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect[J]. Mol Pharmacol, 2012, 82(1): 105-14.
|
[10] |
Merlot AM, Sahni S, Lane DJ, et al. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells[J]. Oncotarget, 2015, 6(12): 10374-98.
|
[11] |
Gutierrez E, Richardson DR, Jansson PJ. The anticancer agent di- 2- pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: persistent induction of autophagosome synthesis and impairment of lysosomal integrity[J]. J Biol Chem, 2014, 289(48): 33568-89.
|
[12] |
Lovejoy DB, Sharp DM, Seebacher N, et al. Novel secondgeneration di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstratepotent activity against lung cancer xenografts after oral and intravenous administration in vivo[J]. J Med Chem, 2012, 55(16): 72 30-44.
|
[13] |
Quach P, Gutierrez E, Basha MT, et al. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect[J]. Mol Pharmacol, 2012, 82(1): 105-14.
|
[14] |
Pahontu E, Julea F, Rosu T, et al. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones[J]. J Cell Mol Med, 2015, 19(4): 865-78.
|
[15] |
Zhu TH, Cao SW, Yu YY. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors[J]. Int J Biol Macromol, 2013, 62: 589-95.
|
[16] |
Zhang N, Tai Y, Li M, et al. Main group bismuth(Ⅲ), gallium(Ⅲ) and diorganotin(Ⅳ) complexes derived from bis(2- acetylpyrazine)thiocarbonohydrazone: synthesis, crystal structures and biological evaluation[J]. Dalton Trans, 2014, 43(13): 5182-9.
|
[17] |
Richardson DR, Sharpe PC, Lovejoy DB, et al. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity[J]. J Med Chem, 20 06, 49(22): 6510-21.
|
[18] |
Ma B, Goh BC, Tan EH, et al. A multicenter phaseⅡtrial of 3- aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells[J]. Invest New Drugs, 2008, 26(2): 169-73.
|
[19] |
Lovejoy DB, Jansson PJ, Brunk UT, et al. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes[J]. Cancer Res, 2011, 71(17): 5871-80.
|
[20] |
Kovacevic Z, Chikhani S, Lovejoy DB, et al. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer[J]. Mol Pharmacol, 2011, 80(4): 598-609.
|
[21] |
Han Y, Chen DX, Guo HL. Advances in DNA damage response[J]. Zhonghau Zhong Liu Fang Zhi Za Zhi, 2013, 20(22): 1775-8. [韩 悦, 陈德喜, 郭洪亮. DNA损伤应答通路研究现状[J]. 中华肿瘤 防治杂志, 2013, 20(22): 1775-8. ]
|
[22] |
Mohni KN, Thompson PS, Luzwick JW, et al. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments[J]. PLoS One, 2015, 10(5): e0125482.
|
[23] |
Park JS, Na HJ, Jeon JH, et al. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila[J]. Aging (Albany NY), 2015, 7(5): 307-18.
|
[24] |
Demoulin B, Hermant M, Castrogiovanni C, et al. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomeraseⅡand activates the ATM kinase to trigger p53- dependent apoptosis[J]. Toxicol In Vitro, 2015, 29(5): 1156-65.
|
[25] |
Chen Z, Zhou Q, Zou D, et al. Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli[J]. Chemosphere, 2015, 135: 379-86.
|
[26] |
Melis JP, van Steeg H, Luijten M. Oxidative DNA damage and nucleotide excision repair[J]. Antioxid Redox Signal, 2013, 18 (18): 2409-19.
|
[27] |
Tang S, Hou Y, Zhang H, et al. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-beta-catenin signaling pathways[J]. Cell Cycle, 2015, 14(12): 19 08-24.
|
[28] |
Inobe T, Nozaki M, Nukina N. Artificial regulation of p53 function by modulating its assembly[J]. Biochem Biophys Res Commun, 20 15, 467(2): 322-7.
|
[29] |
Wong FC, Ng AW, Lee VH, et al. Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 20 10, 76(1): 138-45.
|