高级搜索

胆固醇——乳腺癌风险和预后的预测因子

陈妮娜, 赵磊, 曹邦伟

陈妮娜, 赵磊, 曹邦伟. 胆固醇——乳腺癌风险和预后的预测因子[J]. 肿瘤防治研究, 2019, 46(9): 847-850. DOI: 10.3971/j.issn.1000-8578.2019.19.0265
引用本文: 陈妮娜, 赵磊, 曹邦伟. 胆固醇——乳腺癌风险和预后的预测因子[J]. 肿瘤防治研究, 2019, 46(9): 847-850. DOI: 10.3971/j.issn.1000-8578.2019.19.0265
CHEN Ni'na, ZHAO Lei, CAO Bangwei. Cholesterol: A Predictor of Risk and Prognosis of Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 847-850. DOI: 10.3971/j.issn.1000-8578.2019.19.0265
Citation: CHEN Ni'na, ZHAO Lei, CAO Bangwei. Cholesterol: A Predictor of Risk and Prognosis of Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 847-850. DOI: 10.3971/j.issn.1000-8578.2019.19.0265

胆固醇——乳腺癌风险和预后的预测因子

详细信息
    作者简介:

    陈妮娜(1982-),女,硕士,主治医师,主要从事乳腺癌的个体化治疗工作

    通讯作者:

    曹邦伟,E-mail:oncology@ccmu.edu.cn

  • 中图分类号: R737.9

Cholesterol: A Predictor of Risk and Prognosis of Breast Cancer

More Information
  • 摘要:

    乳腺癌是女性发病率最高的恶性肿瘤,研究表明,胆固醇水平的升高与乳腺癌的预后不良及复发风险增大有关,而且胆固醇在不同分子分型的乳腺癌中作用也不尽相同,他汀类降脂药物尤其是亲脂性他汀类药物对于降低乳腺癌复发风险、改良预后有重大作用。本文就胆固醇在乳腺癌发病及进展中的作用以及降脂治疗对乳腺癌复发和预后的影响进行综述,可对高胆固醇血症与乳腺癌之间关系的基础研究及临床工作提供更多的依据。

     

    Abstract:

    Breast cancer is the most common malignant tumor in women. Some studies have shown that elevated cholesterol level is associated with poor prognosis and increased risk of breast cancer, and cholesterol plays different roles in breast cancer with different molecular types. Statin, especially lipophilic statins, has a great role in reducing the risk of breast cancer and improving prognosis. This article reviews the role of cholesterol in the pathogenesis and progression of breast cancer, as well as the effect of lipid-lowering therapy on the recurrence and prognosis of breast cancer. It can provide more evidence for the basic research and clinical work of the relation between hypercholesterolemia and breast cancer.

     

  • 宫颈癌在全球最常见的女性恶性肿瘤中排名第二,目前仍然是女性癌症相关死亡的主要原因之一。虽然宫颈癌早期可以通过根治手术辅以放化疗得以治愈,但是一些高危因素患者的预后仍然不容乐观[1]。目前的临床数据表明,影响宫颈癌预后的因素包括肿瘤大小、浸润深度、血管的侵犯、子宫旁组织的浸润、盆腔淋巴结转移等,其中盆腔淋巴结的转移被认为是影响术后疗效最重要的危险因素[2]。作为早期诊断及预后评估的分子指标,非编码RNA(non-coding RNA, ncRNAs)已日益得到重视和研究。近年研究表明ncRNAs与宫颈鳞状细胞癌的发生发展有密切关系,参与调控宫颈鳞状细胞癌进程的分子机制和雌孕激素表达[3]

    ncRNAs主要包括microRNAs和lncRNAs[4]。miRNA可通过调控靶基因从而促进宫颈癌细胞凋亡,并能改变肿瘤细胞对药物的敏感度,且能在组织、血清和血浆等标本中稳定存在。miRNA有望成为诊断宫颈癌的新标志物和治疗的新靶点[5]。近年来,lncRNA-miRNAs的调节关系吸引了越来越多学者的注意,lncRNAs和microRNAs的交互调节是目前的研究热点[6]。本研究探讨了LncRNA HCG11和miR-590-3p在宫颈鳞状细胞癌组织中的表达,并且利用qRT-PCR结果和starBase v2.0数据库探讨两者之间的关系,结合患者的临床资料探讨LncRNA HCG11和miR-590-3p与性别、年龄、组织大小、病理分级、淋巴结转移、临床分期以及预后的关系。

    2013年7月—2016年3月在南阳市第二人民医院妇科接受根治性子宫切除术和盆腔淋巴结清扫的58例宫颈鳞状细胞癌患者,年龄28~72岁。根据国际妇产科联合会(FIGO,2014)的诊断标准,58例宫颈鳞状细胞癌病例中,Ⅰ~Ⅱ期12例、Ⅲ~Ⅳ46例;20例有淋巴结转移、38例无淋巴结转移;分化良好(G1)13例、中度分化(G2)32例、低分化(G3)13例。所有患者术前均未接受化疗或放疗;所有病例均有病理组织学诊断支持;所有标本直接取自手术切除物,均为配对组织。每对为肿物和癌旁正常组织距离病灶≥5 cm,经病理证实无肿瘤细胞浸润各一份。在手术切除后10 min之内获得。取材后置于无菌冻存管中,储存至-80℃。所有患者均获得随访,末次随访时间为2016年8月,随访时间5~36月。

    RNA提取试剂盒(天根生物公司,中国),RNA反转录试剂盒(诺维赞生物公司,美国),荧光定量PCR试剂盒(康为世纪生物公司,中国),Biotek Epoch微量核酸定量仪购自美国Biotek公司,7500荧光定量PCR仪购自美国ABI公司。

    通过PCR引物设计软件Primer Premier 5.0设计LncRNA HCG11、GAPDH、has-miR-590-3p和U6的引物序列,具体序列如下:HCG11上游引物:5′-AGGAGTGGTTGCATTTGGGA-3′,下游引物:5′-CCCACCACGCAGTGAATAGT-3′;GAPDH上游引物:5'-GGAAGGACTCATGACCACAGTCC-3',下游引物:5'-TCGCTGTI'GAAGTCAGAGGAGACC-3'。has-miR-590-3p-5p引物为5′-CCTGGCTTTTCATTCCTATGTGA-3′,U6引物为5′-GCTTCGGC AGCACATATACTAAA-3′,并由上海生工生物公司合成。引物干粉离心后用DEPC水配制成20 µmol/L,置于-20℃冰箱备用。

    从子宫颈鳞状细胞癌组织和癌旁组织中抽提总RNA,按总RNA提取试剂盒说明书进行,采用定量分光光度法在A260/280处对提取RNA进行定量。按照反转录试剂盒(诺维赞公司,R111-01/02)说明书对总RNA进行反转录,反转录反应由1 µg的总RNA,与10 µl 2×RT mix,2 µl mix,1 µl Oligo dNTPs,1 µl Random hexamers,6 µl ddH2O总体系20 µl。25℃ 5 min,50℃ 15 min,85℃ 5 min,经反转录形成cDNA。

    根据康为世纪生物公司实时PCR试剂盒说明书进行荧光定量PCR。实时PCR体系为20 µl : 2 µl反向转录产物,2 µl引物,2 µl反向引物,10 µl 2×mix,纯水4 µl。1个循环包括95℃ 30 s、95℃ 5 s和60℃ 30 s,总共40个循环。所有样本重复三次。以2-ΔCt表示基因的相对表达水平。

    采用SPSS 19.0软件进行统计学分析。计量资料以(x±s)表示,计数资料采用构成比(%)表示,58对配对的宫颈鳞状细胞癌和癌旁组织比较采用两配对样本t检验,与临床资料联合分析采用卡方检验,采用Kaplan-Meier法计算生存函数,差异比较采用Log rank检验,采用Cox比例风险模型用于宫颈鳞状细胞癌预后的多因素分析。以P < 0.05为差异有统计学意义。

    应用qRT-PCR检测58对配对的宫颈鳞状细胞癌组织及癌旁组织中LncRNA HCG11和miR-590-3p的表达,以癌旁为参考值,通过配对样本t检验分析2-ΔCt值。结果显示宫颈鳞状细胞癌组织中LncRNA HCG11的平均表达量为(8.23±3.77)低于宫颈鳞状细胞癌癌旁组织(9.62±3.93),miR-590-3p平均表达量为(9.61±4.17)高于宫颈鳞状细胞癌癌旁组织(8.18±4.22),差异有统计学意义(t=3.249, P=0.0019; t=3.403, P=0.0012),见图 1

    图  1  58对配对的宫颈鳞状细胞癌组织及癌旁组织中LncRNA HCG11和miR-590-3p的表达
    Figure  1  LncRNA HCG11 and miR-590-3p expression in 58 pairs of squamous carcinoma of cervix and adjacent non-tumor tissues
    T: squamous carcinoma of cervix(SCC) tissues; N: adjacent non-tumor tissues; A: the expression of LncRNA HCG11 in SCC tissues was inferior to that in non-tumor tissues; B: the expression of miR-590-3p in squamous carcinoma of cervix tissues was superior to that in non-tumor tissues

    通过NONCODE database分析我们知道LncRNA HCG11在宫颈癌细胞系HeLa中的相对表达量为1.874,见图 2A,说明宫颈癌细胞中可以检测到该基因的表达。通过starBase v2.0数据库分析了与LncRNA HCG11可以结合miRNA,发现miR-590-3p与LncRNA HCG11有三个结合位点,见图 2B。通过qRT-PCR结果,分析了宫颈鳞状细胞癌组织中LncRNA HCG11和miR-590-3p核酸水平的相关性,见图 2C,结果呈负相关(r=-0.642, P =0.000)。

    图  2  LncRNA HCG11和miR-590-3p表达相关性分析
    Figure  2  Correlation analysis between LncRNA HCG11 and miR-590-3p expression
    1: adipose; 2: adrenal; 3: brain; 4: brain_R; 5: breast; 6: colon; 7: fores kin; 8: heart; 9: hela_R; 10: HLF_1; 11: HLF_2; 12: kidney; 13: liver; 14: liver_R; 15: lung; 16: lymph Node; 17: ovary; 18: placenta_R; 19: prostate; 20: skeltal muscle; 21: testes; 22: testes_R; 23: thyroid; 24: white blood cell. A: NONCODE database showed that the expression of LncRNA HCG11 in HeLa cells; B: starBase v2.0 databases showed that there were three binding sites between miR-590-3p and LncRNA HCG11; C: qPCR indicated that on nucleic acid level, LncRNA HCG11 expression was negatively correlated with miR-590-3p expression in squamous carcinoma of cervix tissues

    肿瘤组织中LncRNA HCG11和miR-590-3p的表达水平与组织大小、淋巴结转移以及临床分期(P=0.027)有相关性,即癌组织大、有淋巴结转移、临床分期差的患者LncRNA HCG11表达水平越低,而miR-590-3p表达水平越高,见表 1

    表  1  LncRNA HCG11和miR-590-3p的相对表达情况与患者临床病理因素的关系
    Table  1  Relative expression of LncRNA HCG11 and miR-590-3p and their correlation with patients' clinicopathological factors
    下载: 导出CSV 
    | 显示表格

    根据qRT-PCR的结果,用Kaplan-Meier方法分析LncRNA HCG11和miR-590-3p在宫颈鳞状细胞癌组织中的表达和患者生存期之间的关系。按照二者在癌组织中表达量中位数把患者分为高表达组和低表达组,其中LncRNA HCG11高表达者24例、低表达者34例。miR-590-3p高表达者35例、低表达者23例。随访时间15~36月,其中复发14例、死亡14例、13例因复发转移死亡、1例因放化疗相关并发症死亡。分析表明,在宫颈鳞状细胞癌患者中,LncRNA HCG11低表达患者的总生存期明显低于高表达患者(P=0.024);miR-590-3p高表达患者的总生存期明显低于低表达患者(P=0.047),见图 3。Cox单变量分析表明肿瘤大小、淋巴结转移、临床分期和LncRNA HCG11以及miR-590-3p的表达情况与生存相关。Cox比例风险模型多变量分析表明LncRNA HCG11和miR-590-3p表达情况分别是独立的危险因素(P=0.037, 0.042),见表 2

    图  3  LncRNA HCG11和miR-590-3p与患者的预后的关系
    Figure  3  Relationship of LncRNA HCG11 and miR-590-3p expression with patients' prognosis
    A: The overall survival of patients with low LncRNA HCG11 expression was obviously shorter than that with high LncRNA HCG11 expression; B: The overall survival of patients with high miR-590-3p expression was significantly shorter than that with low miR-590-3p expression
    表  2  58例宫颈鳞状细胞癌患者不同预后因素对OS的单因素和多因素分析
    Table  2  Univariate and multivariate analyses of different prognostic factors for OS of 58 patients with squamous carcinoma of cervix
    下载: 导出CSV 
    | 显示表格

    为了预测HCG11的功能,首先使用TCGA构建共表达网络识别差异表达的mRNA和HCG11基因之间的相互作用。根据Pearson相关系数建立基因共表达网络。然后使用MAS 3.0(http://bioinfo.capitalbio.com/mas3/project/index)执行GO和通路分析。根据GO分析结果把前1 000个差异表达的基因进行分类。分析显示,这些基因与信号转导、转录、细胞黏附、细胞转化和蛋白质氨基酸磷酸化相关。通路分析显示HCG11的共表达基因主要参与MAPK信号通路、钙信号通路、Jak-STAT信号通路和Wnt信号通路等。

    非编码RNA占整个人类基因组的98%左右,包括lncRNAs和microRNAs[7]。miRNA能够结合到目标mRNA的3′UTR,调节mRNA的稳定性和翻译过程,最终导致mRNA的翻译被抑制或被降解[7-8]。miRNA可分为癌基因和抑癌基因,参与细胞的多个生物过程,包括增殖、凋亡、代谢、细胞分化等[9]。越来越多的证据表明,microRNA参与多种癌症的进展过程。与已经非常熟悉的microRNAs相比,LncRNAs方面的研究相对较少。长非编码RNA(LncRNAs)由超过200个核苷酸组成,是ncRNAs中重要的成员,不能被翻译成蛋白质[10]。到目前为止,绝大多数的LncRNAs已被鉴定出来[11-12]。许多研究已经证明,LncRNAs在癌症的发生发展中发挥了重要作用[13-15]。目前LncRNA的研究处于起步阶段,因此大多数LncRNA的功能仍是未知。LncRNA能不能作为肿瘤诊断和预后的生物标志物,以及在临床中的意义,人们还没有一个确切的结论。

    目前,很多国家都在致力寻找并建立一些可以有效筛查宫颈鳞状细胞癌的项目,从而降低其发病率和死亡率。这些筛查基本需依赖细胞学巴氏涂片,有些联合检查可以预防多达91%的浸润性宫颈鳞状细胞癌[2]。然而,这些项目花费较高,因此,寻找客观精准而又方便检测的标志物,来提示发病和预后是宫颈鳞状细胞癌目前重要的研究方向。一些与宫颈鳞状细胞癌预后相关的分子虽然已得到初步证实,但是它们的作用机制仍不确定。

    目前,国内外已发表的与宫颈鳞状细胞癌致病相关的lncRNA有HOTAIR[16]、MALAT1[17]、H19[18]、EBIC[19]、MEG3[20]、GAS5[21],XLOC_010588[22]等。这7个LncRNAs在有些文献中的报道是抑癌作用,有些文献中报道是促癌作用,比如TUG1在结肠癌中表现为上调[23],在非小细胞肺癌中表达下调[24],与其他文献报道不同,说明LncRNAs的表达存在组织特异性、个体差异性,且在组织中表达差异并不显著,均不足以成为宫颈癌的特异肿瘤标志物。

    该研究发现与癌旁组织相比HCG11在宫颈鳞状细胞癌组织中显著下调,且与肿瘤组织大小、淋巴结转移以及临床分期有关。starBase v2.0数据库分析表明miR-590-3p与LncRNA HCG11有三个结合位点。随后研究发现miR-590-3p在宫颈鳞状细胞癌组织中表达明显上调,且与组织大小、淋巴结转移、临床分期以及预后有关,而且发现LncRNA HCG11和miR-590-3p核酸水平呈显著的负相关。为了进一步探讨HCG11的功能,我们进行了GO和KEGG通路分析。结果表明受其表达影响的基因参与包括信号转导、转录调控、细胞黏附、恶性转化和氨基酸磷酸化等过程。HCG11参与MAPK信号通路、钙信号通路、Jak-STAT信号通路和Wnt信号通路的调控。

    目前关于LncRNA HCG11与肿瘤研究的报道较少,其中HCG11在乳腺癌与前列腺癌中表达下调的患者预后较差。miR-590-3p与肿瘤的研究比较多,Yang等[25]发现miR-590-3p通过激活PI3K-AKT信号通路下调PTEN,促进AKT1-S473的磷酸化作用,进而发挥促进肝癌细胞增殖。Sun等[26]发现,miR-590-3p通过Hippo通路促进结肠癌细胞的增殖和转移。LncRNA的作用机制之一就是通过海绵样吸附作用,竞争性与microRNA结合,抑制其进一步发挥基因调控的作用。由此推测,LncRNA HCG11有可能通过调控miR-590-3p的表达发挥其抑癌作用。可以通过进一步的体外细胞实验对该调控机制进行验证。

    作者贡献
    陈妮娜:查阅文献,撰写、校正文稿
    赵磊:查阅文献
    曹邦伟:文章立意,校正文稿
  • [1]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.v69.1

    [2]

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70. doi: 10.1038/nature11412

    [3]

    Singletary SE. Rating the risk factors for breast cancer[J]. Ann Surg, 2003, 237(4): 474-482. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1514477/

    [4]

    Baek AE, Nelson ER. The Contribution of Cholesterol and Its Metabolites to the Pathophysiology of Breast Cancer[J]. Horm Cancer, 2016, 7(4): 219-228. doi: 10.1007/s12672-016-0262-5

    [5]

    Gravena AAF, Romeiro Lopes TC, Demitto MO, et al. The Obesity and the Risk of Breast Cancer among Pre and Postmenopausal Women[J]. Asian Pac J Cancer Prev, 2018, 19(9): 2429-2436. http://cn.bing.com/academic/profile?id=527d29251425031a4ba3c66b3191739b&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    Dibaba DT, Ogunsina K, Braithwaite D, et al. Metabolic syndrome and risk of breast cancer mortality by menopause, obesity, and subtype[J]. Breast Cancer Res Treat, 2019, 174(1): 209-218. doi: 10.1007/s10549-018-5056-8

    [7]

    Maskarinec G, Shvetsov YB, Conroy SM, et al. Type 2 diabetes as a predictor of survival among breast cancer patients: the multiethnic cohort[J]. Breast Cancer Res Treat, 2019, 173(3): 637-645. doi: 10.1007/s10549-018-5025-2

    [8]

    Amani M, Darbin A, Pezeshkian M, et al. The role of cholesterol-enriched diet and paraoxonase 1 inhibition in atherosclerosis progression[J]. J Cardiovasc Thorac Res, 2017, 9(3): 133-139. doi: 10.15171/jcvtr.2017.23

    [9]

    Tie G, Yan J, Khair L, et al. Hypercholesterolemia Increases Colorectal Cancer Incidence by Reducing Production of NKT and gammadelta T Cells from Hematopoietic Stem Cells[J]. Cancer Res, 2017, 77(9): 2351-2362. doi: 10.1158/0008-5472.CAN-16-1916

    [10]

    Jeon JC, Park J, Park S, et al. Hypercholesterolemia Is Associated with a Shorter Time to Castration-Resistant Prostate Cancer in Patients Who Have Undergone Androgen Deprivation Therapy[J]. World J Mens Health, 2016, 34(1): 28-33. doi: 10.5534/wjmh.2016.34.1.28

    [11]

    Reboldi A, Dang E. Cholesterol metabolism in innate and adaptive response[J]. F1000Res, 2018: 7. pii: F1000 Faculty Rev-1647.

    [12]

    Ribas V, García-Ruiz C, Fernández-Checa JC. Mitochondria, cholesterol and cancer cell metabolism[J]. Clin Transl Med, 2016, 5(1): 22. doi: 10.1186/s40169-016-0106-5

    [13]

    Bietz A, Zhu H, Xue M, et al. Cholesterol Metabolism in T Cells[J]. Front Immunol, 2017, 8: 1664. doi: 10.3389/fimmu.2017.01664

    [14]

    Craig M, Walik A. Biochemistry, Cholesterol[M/OL]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019-. 2019 Apr 17.

    [15]

    Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis[J]. Free Radic Biol Med, 2018, 118: 85-97. doi: 10.1016/j.freeradbiomed.2018.02.031

    [16]

    Munir MT, Ponce C, Powell CA, et al. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer[J]. J Steroid Biochem Mol Biol, 2018, 183: 1-9. doi: 10.1016/j.jsbmb.2018.05.001

    [17]

    Alikhani N, Ferguson RD, Novosyadlyy R, et al. Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model[J]. Oncogene, 2013, 32(8): 961-967. doi: 10.1038/onc.2012.113

    [18]

    Nelson ER. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer[J]. Mol Cell Endocrinol, 2018, 466: 73-80. doi: 10.1016/j.mce.2017.09.021

    [19]

    Zhao Z, Hao D, Wang L, et al. CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-beta signaling[J]. Oncogene, 2019, 38(12): 2076-2091. doi: 10.1038/s41388-018-0570-z

    [20]

    Nelson DJ, Clark B, Munyard K, et al. A review of the importance of immune responses in luminal B breast cancer[J]. Oncoimmunology, 2017, 6(3): e1282590. doi: 10.1080/2162402X.2017.1282590

    [21]

    Haldosén LA, Zhao C, Dahlman-Wright K. Dahlman-Wright, Estrogen receptor beta in breast cancer[J]. Mol Cell Endocrinol, 2014, 382(1): 665-672. doi: 10.1016/j.mce.2013.08.005

    [22]

    Yang J, Wei X, Tufan T, et al. Recurrent mutations at estrogen receptor binding sites alter chromatin topology and distal gene expression in breast cancer[J]. Genome Biol, 2018, 19(1): 190. doi: 10.1186/s13059-018-1572-4

    [23]

    Esau L, Sagar S, Bangarusamy D, et al. Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents[J]. Genes Cancer, 2016, 7(9-10): 309-322. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115172/

    [24]

    Simigdala N, Gao Q, Pancholi S, et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer[J]. Breast Cancer Res, 2016, 18(1): 58. doi: 10.1186/s13058-016-0713-5

    [25]

    Qi XL, Yao J, Zhang Y. No association between the progesterone receptor gene polymorphism (+331G/a) and the risk of breast cancer: an updated meta-analysis[J]. BMC Med Genet, 2017, 18(1): 123. doi: 10.1186/s12881-017-0487-3

    [26]

    Liang Y, Goyette S, Hyder SM. Cholesterol biosynthesis inhibitor RO 48-8071 reduces progesterone receptor expression and inhibits progestin-dependent stem cell-like cell growth in hormone-dependent human breast cancer cells[J]. Breast Cancer (Dove Med Press), 2017, 9: 487-494. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511027/

    [27]

    Li S, Wei W, Jiang Y, et al. Comparison of the efficacy and survival analysis of neoadjuvant chemotherapy for Her-2-positive breast cancer[J]. Drug Des Devel Ther, 2018, 12: 3085-3093. doi: 10.2147/DDDT

    [28]

    Gallagher EJ, Zelenko Z, Neel BA, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia[J]. Oncogene, 2017, 36(46): 6462-6471. doi: 10.1038/onc.2017.247

    [29]

    Ye J, Xia X, Dong W, et al. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines[J]. Int J Nanomedicine, 2016, 11: 4125-4140. doi: 10.2147/IJN

    [30]

    Shim SH, Sur S, Steele R, et al. Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth[J]. Mol Carcinog, 2018, 57(11): 1599-1607. doi: 10.1002/mc.v57.11

    [31]

    Torres-Adorno AM, Vitrac H, Qi Y, et al. Eicosapentaenoic acid in combination with EPHA2 inhibition shows efficacy in preclinical models of triple-negative breast cancer by disrupting cellular cholesterol efflux[J]. Oncogene, 2019, 38(12): 2135-2150. doi: 10.1038/s41388-018-0569-5

    [32]

    Clendening JW, Penn LZ. Targeting tumor cell metabolism with statins[J]. Oncogene, 2012, 31(48): 4967-7498. doi: 10.1038/onc.2012.6

    [33]

    Bjarnadottir O, Romero Q, Bendahl PO, et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial[J]. Breast Cancer Res Treat, 2013, 138(2): 499-508. doi: 10.1007/s10549-013-2473-6

    [34]

    Nelson ER, Wardell SE, Jasper JS, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology[J]. Science, 2013, 342(6162): 1094-1098. doi: 10.1126/science.1241908

    [35]

    Feldt M, Bjarnadottir O, Kimbung S, et al. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial[J]. J Transl Med, 2015, 13: 133. doi: 10.1186/s12967-015-0486-0

    [36]

    Manthravadi S, Shrestha A, Madhusudhana S. Impact of statin use on cancer recurrence and mortality in breast cancer: A systematic review and meta-analysis[J]. Int J Cancer, 2016, 139(6): 1281-1288. doi: 10.1002/ijc.v139.6

    [37]

    Arun BK, Gong Y, Liu D, et al. Phase I biomarker modulation study of atorvastatin in women at increased risk for breast cancer[J]. Breast Cancer Res Treat, 2016, 158(1): 67-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97273297f22d3ceb4ec7d88f4503c204

    [38]

    Borgquist S, Giobbie-Hurder A, Ahern TP, et al. Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study[J]. J Clin Oncol, 2017, 35(11): 1179-1188. doi: 10.1200/JCO.2016.70.3116

    [39]

    Ahern TP, Pedersen L, Tarp M, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study[J]. J Natl Cancer Inst, 2011, 103(19): 1461-1468. doi: 10.1093/jnci/djr291

    [40]

    Liu B, Yi Z, Guan X, et al. The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis[J]. Breast Cancer Res Treat, 2017, 164(1): 1-11. http://www.ncbi.nlm.nih.gov/pubmed/28432513

  • 期刊类型引用(7)

    1. 王莉,刘慧婷,钱立庭,魏东华,马艳玲,邹明明,王德斌,柴静. 基于Markov模型的安徽省城市肺癌筛查卫生经济学评价研究. 中国肿瘤. 2025(02): 132-137 . 百度学术
    2. 沈毅钧,胡文斌,倪斌. 1981—2020年昆山市肺癌疾病负担和间接经济负担分析. 肿瘤防治研究. 2024(02): 121-126 . 本站查看
    3. 吕安淇,柯佳. cGAS/STING信号通路干预肺癌的机制及中药干预研究进展. 中国实验方剂学杂志. 2024(09): 236-244 . 百度学术
    4. 魏萍萍,林勇,庄晨,孟小琴,陈秋丹. 鳞状细胞癌抗原、胃泌素释放肽前体、神经元特异性烯醇化酶对肺癌的诊断价值. 癌症进展. 2024(03): 302-305 . 百度学术
    5. 李艳娜,夏慧琳,朱丹丹,朱永丽. CT三维重建技术辅助单孔胸腔镜肺段切除术术前规划的临床应用价值研究. 现代仪器与医疗. 2024(04): 80-85 . 百度学术
    6. 佟硕,张博洋,白玥,张斌. CT人工智能技术检查指标联合miR-33a-5p鉴别诊断亚实性结节型肺腺癌浸润程度的价值. 实用心脑肺血管病杂志. 2024(09): 91-94+98 . 百度学术
    7. 黄炎. 基于Logistic回归方程分析能谱CT参数对非小细胞肺癌PD-L1表达的预测价值. 影像研究与医学应用. 2023(22): 36-38 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1509
  • HTML全文浏览量:  377
  • PDF下载量:  590
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-03-06
  • 修回日期:  2019-04-01
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2019-09-24

目录

/

返回文章
返回
x 关闭 永久关闭