[1] |
Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell, 2003, 113(5): 631-42.
|
[2] |
Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-55.
|
[3] |
Do DV, Ueda J, Messerschmidt DM, et al. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo[J]. Genes Dev, 2013, 27(12): 1378-90.
|
[4] |
Hyslop L, Stojkovic M, Armstrong L, et al. Down-regulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages[J]. Stem Cells, 2005, 23(8): 1035-43.
|
[5] |
Zhang J, Wang X, Chen B, et al. Expression of Nanog gene promotes NIH3T3 cell proliferation[J]. Biochem Biophys Res Commun, 2005, 338(2): 1098-102.
|
[6] |
Piestun D, Kochupurakkal BS, Jacob-Hirsch J, et al. Nanog transforms NIH3T3 cells and targets cell-type restricted genes[J]. Biochem Biophys Res Commun, 2006, 343(1): 279-85.
|
[7] |
Lin YL, Han ZB, Xiong FY, et al. Malignant transformation of 293 cells induced by ectopic expression of human Nanog[J]. Mol Cell Biochem, 2011, 351(1-2): 109-16.
|
[8] |
Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumordevelopment[J]. Stem Cells, 2009, 27(5): 993-1005.
|
[9] |
Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation[J]. Cancer Res, 2010, 70(24): 10433-44.
|
[10] |
Han J, Zhang F, Yu M, et al. RNA interference mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells[J]. Cancer Lett, 2012, 321(1): 80-8.
|
[11] |
Siu MK, Wong ES, Kong DS, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers [J]. Oncogene, 2012, 32(30): 3500-9.
|
[12] |
Sun C, Sun L, Jiang K, et al. NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway[J]. Int J Biochem Cell Biol, 20 13, 45(6): 1099-108.
|
[13] |
Lu X, Mazur SJ, Lin T, et al. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis[J]. Oncogene, 2014, 33(20): 2655-64.
|
[14] |
Meng HM, Zheng P, Wang XY, et al. Overexpression of Nanog predicts tumor progression and poor prognosis in colorectal cancer[J]. Cancer Biol Ther, 2010, 9(4): 295-302.
|
[15] |
Liu CW, Li CH, Peng YJ, et al. Snail regulates Nanog status during the epithelial-mesenchymal transition via the Smad1/ Akt/GSK3β signaling pathway in non-small-cell lung cancer[J]. Oncotarget, 2014, 5(11): 3880-94.
|
[16] |
Ho B, Olson G, Figel S, et al. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated[J]. J Biol Chem, 2012, 28 7(22): 18656-73.
|
[17] |
Bourguignon LY, Peyrollier K, Xia W, et al. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells[J]. J Biol Chem, 2008, 283(25): 17 635-51.
|
[18] |
Bourguignon LY, Spevak CC, Wong G, et al. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker nanog and the production of MicroRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem, 2009, 284(39): 26 533-46.
|
[19] |
Bourguignon LY, Earle C, Wong G, et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells[J]. Oncogene, 2012, 31(2):149-60.
|
[20] |
Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma[J]. J Biol Chem, 2012, 287(39): 32800-24.
|
[21] |
Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res, 2008, 68(11): 4311-20.
|
[22] |
Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing nanog expression[J]. Nat Cell Biol, 2005, 7(2): 165-71.
|
[23] |
Xu CX, Xu M, Tan L, et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog[J]. J Biol Chem 20 12, 287(42): 34970-8.
|
[24] |
Lagadec C, Vlashi E, Della Donna L, et al. Radiation-induced reprogramming of breast cancer cells[J]. Stem Cells, 2012, 30(5): 83 3-44.
|
[25] |
Zhang J, Espinoza LA, Kinders RJ, et al. NANOG modulates stemness in human colorectal cancer[J]. Oncogene, 2013, 32(37): 43 97-405.
|
[26] |
Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms[J]. Stem Cells, 2012, 30(10): 2076-87.
|
[27] |
Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 20 09, 27(5): 1006-20.
|
[28] |
Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma[J]. Hepatology, 2012, 56(3): 10 04-14.
|
[29] |
Lee TK, Castilho A, Cheung VC, et al. CD24(+) liver tumorinitiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation[J]. Cell Stem Cell, 2011, 9( 1): 50-63.
|
[30] |
Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation[J]. Oncogene, 2011, 30(36): 3833-45.
|
[31] |
Palla AR, Piazzolla D, Abad M, et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer[J]. Oncogene, 2014, 33(19): 2513-9.
|
[32] |
Zbinden M, Duquet A, Lorente-Trigos A, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a crossfunctional network with GLI1 and p53[J]. EMBO J, 2010, 29(15): 26 59-74.
|
[33] |
Si d d i q u e HR, Fe l dma n DE, Ch e n CL, e t a l . NUMB Phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by NANOG-dependent mechanism in liver cancer[J]. Hepatology, 2015, 62(5): 1466-79.
|
[34] |
Chen WJ, Ho CC, Chang YL, et al. Cancer associated fibroblas ts regulate the plasticity of lung cancer stemness via paracrine signalling[J]. Nat Commun, 2014, 5: 3472.
|
[35] |
Noh KH, Kim BW, Song KH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion[J]. J Clin Invest, 2012, 122(11): 4077-93.
|
[36] |
Noh KH, Lee YH, Jeon JH, et al. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immuneresistant and stem-like phenotype[J]. Cancer Res, 2012, 72(7): 17 17-27.
|
[37] |
Lee HJ, Noh KH, Lee YH, et al. NANOG signaling promotes metastatic capability of immunoedited tumor cells[J]. Clin Exp Metastasis, 2015, 32(5): 429-39.
|
[38] |
Zhang J, Wang X, Chen B, et al. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development[J]. Oncol Lett, 2010, 1(3): 457-63.
|
[39] |
Lin T, Ding YQ, Li JM. Overexpression of nanog protein is associated with poor prognosis in gastric adenocarcinoma[J]. Med Oncol, 2012, 29(2): 878-85.
|
[40] |
Nagata T, Shimada Y, Sekine S, et al. Prognostic significance of NANOG and KLF4 for breast cancer [J]. Breast Cancer, 2014, 21 (1): 96-101.
|
[41] |
Wang D, Lu P, Zhang H, et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients [J]. Oncotarget, 2014, 5(21): 10803-15.
|
[42] |
Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008, 14(13): 40 85-95.
|
[43] |
Li XQ, Yang XL, Zhang G, et al. Nuclear beta-catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer[J]. J Transl Med, 2013, 11: 114.
|
[44] |
Du Y, Ma C, Wang Z, et al. Nanog, a novel prognostic marker for lung cancer[J]. Surg Oncol, 2013, 22(4): 224-9.
|
[45] |
Ding Y, Yu AQ, Li CL, et al. TALEN mediated Nanog disruption r esults in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells[J]. Oncotarget, 2014, 5(18): 8393-401.
|
[46] |
Kawamura N, Nimura K, Nagano H, et al. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells[J]. Oncotarget, 2015, 6( 26): 22361-74.
|
[47] |
Iv Santaliz-Ruiz LE, Xie X, Old M, et al. Emerging role of nanog in tumorigenesis and cancer stem cells[J]. Int J Cancer, 2014, 13 5(12): 2741-8.
|
[48] |
Paranjape AN, Balaji SA, Mandal T, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog[J]. BMC Cancer, 2014, 14: 785.
|
[49] |
Kregel S, Szmulewitz RZ, Vander Griend DJ. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancercells[J]. Prostate, 2014, 74(15): 1530-43.
|
[50] |
Gong S, Li Q, Jeter CR, et al. Regulation of NANOG in cancer cells[J]. Mol Carcinog, 2015, 54(9): 679-87.
|
[51] |
Xie X, Piao L, Cavey GS, et al. Phosphorylation of Nanog is essential to regulate Bmi1 and pro-mote tumorigenesis[J]. Oncogene, 2014, 33(16): 2040-52.
|
[52] |
Mattoo AR, Zhang J, Espinoza LA, et al. Inhibition of NANOG/ NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics[J]. Clin Cancer Res, 2014, 20(21): 5446-55.
|
[53] |
Jeter CR, Yang T, Wang J, et al. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions[J]. Stem Cells, 2015, 33(8): 2381-90.
|