高级搜索

干细胞因子Nanog在肿瘤中的研究进展

张徐, 徐梦, 刘叶, 顾笑笑, 钱晖, 许文荣

张徐, 徐梦, 刘叶, 顾笑笑, 钱晖, 许文荣. 干细胞因子Nanog在肿瘤中的研究进展[J]. 肿瘤防治研究, 2016, 43(4): 295-299. DOI: 10.3971/j.issn.1000-8578.2016.04.012
引用本文: 张徐, 徐梦, 刘叶, 顾笑笑, 钱晖, 许文荣. 干细胞因子Nanog在肿瘤中的研究进展[J]. 肿瘤防治研究, 2016, 43(4): 295-299. DOI: 10.3971/j.issn.1000-8578.2016.04.012
ZHANG Xu, XU Meng, LIU Ye, GU Xiaoxiao, QIAN Hui, XU Wenrong. Role of Nanog in Tumorigenesis and Tumor Development[J]. Cancer Research on Prevention and Treatment, 2016, 43(4): 295-299. DOI: 10.3971/j.issn.1000-8578.2016.04.012
Citation: ZHANG Xu, XU Meng, LIU Ye, GU Xiaoxiao, QIAN Hui, XU Wenrong. Role of Nanog in Tumorigenesis and Tumor Development[J]. Cancer Research on Prevention and Treatment, 2016, 43(4): 295-299. DOI: 10.3971/j.issn.1000-8578.2016.04.012

干细胞因子Nanog在肿瘤中的研究进展

基金项目: 国家自然科学青年基金(81201660);江苏省自然科学基金面上项目(BK20141303);江苏省“青蓝工程”项目;江苏大学高级专业人才科研启动基金(13JDG086);江苏大学大学生科研立项 (13A275)
详细信息
    作者简介:

    张徐(1984-),男,博士,副教授,主要从事肿瘤分子生物学研究

  • 中图分类号: R730. 2

Role of Nanog in Tumorigenesis and Tumor Development

  • 摘要: Nanog是维持胚胎干细胞自我更新和多能性的关键转录因子。Nanog在分化的细胞中表达逐渐降低或缺失。研究发现肿瘤细胞中Nanog异常激活,并且与肿瘤发生、发展和转移密切相关。Nanog通过调控肿瘤细胞增殖、迁移和侵袭、肿瘤干性以及肿瘤免疫逃逸等多种机制参与肿瘤生长、转移和耐药。临床研究证据提示Nanog在肿瘤患者中异常高表达,可作为预后评估的独立指标。本文就Nanog在肿瘤中的作用、分子机制和临床应用的研究进展作一综述。

     

    Abstract: Nanog is a key transcription factor involved in maintaining the self-renewal and pluripotency of embryonic stem cells. The expression of Nanog is gradually decreased with cell differentiation and tissue maturation. The recent studies demonstrate that Nanog expression is restored in tumor cells. Nanog plays pleiotropic roles in tumorigenesis and tumor development. Nanog promotes tumor growth, metastasis and drug resistance via regulating tumor cell proliferation, migration and invasion, tumor stemness, as well as tumor immune escape. Nanog overexpression is an independent indicator for poor prognosis. In this review, we summarize the recent progress of Nanog in tumor and the underlying molecular mechanisms, with an emphasis on the potential of Nanog in tumor diagnosis and targeted therapy.

     

  • [1] Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell, 2003, 113(5): 631-42.
    [2] Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-55.
    [3] Do DV, Ueda J, Messerschmidt DM, et al. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo[J]. Genes Dev, 2013, 27(12): 1378-90.
    [4] Hyslop L, Stojkovic M, Armstrong L, et al. Down-regulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages[J]. Stem Cells, 2005, 23(8): 1035-43.
    [5] Zhang J, Wang X, Chen B, et al. Expression of Nanog gene promotes NIH3T3 cell proliferation[J]. Biochem Biophys Res Commun, 2005, 338(2): 1098-102.
    [6] Piestun D, Kochupurakkal BS, Jacob-Hirsch J, et al. Nanog transforms NIH3T3 cells and targets cell-type restricted genes[J]. Biochem Biophys Res Commun, 2006, 343(1): 279-85.
    [7] Lin YL, Han ZB, Xiong FY, et al. Malignant transformation of 293 cells induced by ectopic expression of human Nanog[J]. Mol Cell Biochem, 2011, 351(1-2): 109-16.
    [8] Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumordevelopment[J]. Stem Cells, 2009, 27(5): 993-1005.
    [9] Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation[J]. Cancer Res, 2010, 70(24): 10433-44.
    [10] Han J, Zhang F, Yu M, et al. RNA interference mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells[J]. Cancer Lett, 2012, 321(1): 80-8.
    [11] Siu MK, Wong ES, Kong DS, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers [J]. Oncogene, 2012, 32(30): 3500-9.
    [12] Sun C, Sun L, Jiang K, et al. NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway[J]. Int J Biochem Cell Biol, 20 13, 45(6): 1099-108.
    [13] Lu X, Mazur SJ, Lin T, et al. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis[J]. Oncogene, 2014, 33(20): 2655-64.
    [14] Meng HM, Zheng P, Wang XY, et al. Overexpression of Nanog predicts tumor progression and poor prognosis in colorectal cancer[J]. Cancer Biol Ther, 2010, 9(4): 295-302.
    [15] Liu CW, Li CH, Peng YJ, et al. Snail regulates Nanog status during the epithelial-mesenchymal transition via the Smad1/ Akt/GSK3β signaling pathway in non-small-cell lung cancer[J]. Oncotarget, 2014, 5(11): 3880-94.
    [16] Ho B, Olson G, Figel S, et al. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated[J]. J Biol Chem, 2012, 28 7(22): 18656-73.
    [17] Bourguignon LY, Peyrollier K, Xia W, et al. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells[J]. J Biol Chem, 2008, 283(25): 17 635-51.
    [18] Bourguignon LY, Spevak CC, Wong G, et al. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker nanog and the production of MicroRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem, 2009, 284(39): 26 533-46.
    [19] Bourguignon LY, Earle C, Wong G, et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells[J]. Oncogene, 2012, 31(2):149-60.
    [20] Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma[J]. J Biol Chem, 2012, 287(39): 32800-24.
    [21] Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res, 2008, 68(11): 4311-20.
    [22] Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing nanog expression[J]. Nat Cell Biol, 2005, 7(2): 165-71.
    [23] Xu CX, Xu M, Tan L, et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog[J]. J Biol Chem 20 12, 287(42): 34970-8.
    [24] Lagadec C, Vlashi E, Della Donna L, et al. Radiation-induced reprogramming of breast cancer cells[J]. Stem Cells, 2012, 30(5): 83 3-44.
    [25] Zhang J, Espinoza LA, Kinders RJ, et al. NANOG modulates stemness in human colorectal cancer[J]. Oncogene, 2013, 32(37): 43 97-405.
    [26] Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms[J]. Stem Cells, 2012, 30(10): 2076-87.
    [27] Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 20 09, 27(5): 1006-20.
    [28] Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma[J]. Hepatology, 2012, 56(3): 10 04-14.
    [29] Lee TK, Castilho A, Cheung VC, et al. CD24(+) liver tumorinitiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation[J]. Cell Stem Cell, 2011, 9( 1): 50-63.
    [30] Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation[J]. Oncogene, 2011, 30(36): 3833-45.
    [31] Palla AR, Piazzolla D, Abad M, et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer[J]. Oncogene, 2014, 33(19): 2513-9.
    [32] Zbinden M, Duquet A, Lorente-Trigos A, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a crossfunctional network with GLI1 and p53[J]. EMBO J, 2010, 29(15): 26 59-74.
    [33] Si d d i q u e HR, Fe l dma n DE, Ch e n CL, e t a l . NUMB Phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by NANOG-dependent mechanism in liver cancer[J]. Hepatology, 2015, 62(5): 1466-79.
    [34] Chen WJ, Ho CC, Chang YL, et al. Cancer associated fibroblas ts regulate the plasticity of lung cancer stemness via paracrine signalling[J]. Nat Commun, 2014, 5: 3472.
    [35] Noh KH, Kim BW, Song KH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion[J]. J Clin Invest, 2012, 122(11): 4077-93.
    [36] Noh KH, Lee YH, Jeon JH, et al. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immuneresistant and stem-like phenotype[J]. Cancer Res, 2012, 72(7): 17 17-27.
    [37] Lee HJ, Noh KH, Lee YH, et al. NANOG signaling promotes metastatic capability of immunoedited tumor cells[J]. Clin Exp Metastasis, 2015, 32(5): 429-39.
    [38] Zhang J, Wang X, Chen B, et al. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development[J]. Oncol Lett, 2010, 1(3): 457-63.
    [39] Lin T, Ding YQ, Li JM. Overexpression of nanog protein is associated with poor prognosis in gastric adenocarcinoma[J]. Med Oncol, 2012, 29(2): 878-85.
    [40] Nagata T, Shimada Y, Sekine S, et al. Prognostic significance of NANOG and KLF4 for breast cancer [J]. Breast Cancer, 2014, 21 (1): 96-101.
    [41] Wang D, Lu P, Zhang H, et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients [J]. Oncotarget, 2014, 5(21): 10803-15.
    [42] Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008, 14(13): 40 85-95.
    [43] Li XQ, Yang XL, Zhang G, et al. Nuclear beta-catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer[J]. J Transl Med, 2013, 11: 114.
    [44] Du Y, Ma C, Wang Z, et al. Nanog, a novel prognostic marker for lung cancer[J]. Surg Oncol, 2013, 22(4): 224-9.
    [45] Ding Y, Yu AQ, Li CL, et al. TALEN mediated Nanog disruption r esults in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells[J]. Oncotarget, 2014, 5(18): 8393-401.
    [46] Kawamura N, Nimura K, Nagano H, et al. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells[J]. Oncotarget, 2015, 6( 26): 22361-74.
    [47] Iv Santaliz-Ruiz LE, Xie X, Old M, et al. Emerging role of nanog in tumorigenesis and cancer stem cells[J]. Int J Cancer, 2014, 13 5(12): 2741-8.
    [48] Paranjape AN, Balaji SA, Mandal T, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog[J]. BMC Cancer, 2014, 14: 785.
    [49] Kregel S, Szmulewitz RZ, Vander Griend DJ. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancercells[J]. Prostate, 2014, 74(15): 1530-43.
    [50] Gong S, Li Q, Jeter CR, et al. Regulation of NANOG in cancer cells[J]. Mol Carcinog, 2015, 54(9): 679-87.
    [51] Xie X, Piao L, Cavey GS, et al. Phosphorylation of Nanog is essential to regulate Bmi1 and pro-mote tumorigenesis[J]. Oncogene, 2014, 33(16): 2040-52.
    [52] Mattoo AR, Zhang J, Espinoza LA, et al. Inhibition of NANOG/ NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics[J]. Clin Cancer Res, 2014, 20(21): 5446-55.
    [53] Jeter CR, Yang T, Wang J, et al. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions[J]. Stem Cells, 2015, 33(8): 2381-90.
计量
  • 文章访问数:  1460
  • HTML全文浏览量:  318
  • PDF下载量:  1144
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-26
  • 修回日期:  2015-12-03
  • 刊出日期:  2016-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭