文章信息
- 张徐,徐梦,刘叶,顾笑笑,钱晖,许文荣.
- ZHANG Xu, XU Meng, LIU Ye, GU Xiaoxiao, QIAN Hui, XU Wenrong.
- 干细胞因子Nanog在肿瘤中的研究进展
- Role of Nanog in Tumorigenesis and Tumor Development
- 肿瘤防治研究, 2016, 43(4): 295-299
- Cancer Research on Prevention and Treatment, 2016, 43(4): 295-299
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2016.04.012
-
文章历史
- 收稿日期: 2015-07-27
- 修回日期: 2015-12-04
2003年Mitsui和Chambers等在研究胚胎干细胞(embryonic stem cells,ESCs)时发现了一种新的多能干细胞转录因子,起初称为 Ecat4(ES cell associated transcripts 4),随后统一命名为Nanog[1, 2]。Nanog能够不依赖于LIF(leukemia inhibitory factor)/STAT3(signal transducer and activator of transcription 3)参与调控胚胎干细胞自我更新和多能性维持。Nanog属于ANTP超家族NK-2型基因,主要表达于胚泡的内细胞团[3]。Nanog基因表达随着细胞分化逐渐降低,直到在完全分化的细胞不表达[4]。但是研究发现Nanog在生殖细胞肿瘤和多种实体肿瘤中高表达,而且Nanog表达水平与肿瘤细胞的分化程度以及肿瘤的病理分期呈正相关。研究证实Nanog参与肿瘤发生发展过程的多个环节。Nanog参与正常细胞恶性转化,维持肿瘤干细胞自我更新,调控肿瘤细胞增殖、迁移和侵袭,以及促进肿瘤免疫逃逸。Nanog在肿瘤中的多重作用可能是推动肿瘤发生发展的重要因素。因此,深入研究Nanog在肿瘤中的确切作用及其信号网络,不仅能够为揭示肿瘤分子病理机制提供新的实验证据,同时也能够为肿瘤早期诊断、预防和治疗提供新的分子靶点。
1 Nanog分子概述人胚胎Nanog基因(Nanog1基因)定位于12号染色体,含有4个外显子和3个内含子,还有11个假基因(pseudogene),其中仅Nanog P8(定位于15号染色体)具有完整开放读码框,能够编码蛋白。由于Nanog1和Nanog P8在蛋白序列、结构和功能上具有极大相似性,目前研究将两者统称为Nanog。人Nanog蛋白含有305个氨基酸,分为N端(1~95aa),同源盒区(96~155aa),C端(156~305aa)。N端富含丝氨酸、苏氨酸和脯氨酸,可被翻译后修饰如磷酸化调节;同源盒区含有DNA结合序列以及出入核信号序列;C端具有转录激活作用。Nanog能促进胚胎干细胞的自我更新,使其保持未分化特性,还能使终末分化细胞发生重编程而显示多能性。
2 Nanog在肿瘤中的作用早期研究认为Nanog只在多能性干细胞中表达,在成体组织中不表达。然而最近研究发现Nanog在肿瘤细胞中高表达。由于肿瘤细胞与干细胞具有较多的相似性,据此推测Nanog可能在肿瘤发生发展中也起着重要的作用。
2.1 Nanog与细胞恶性转化及肿瘤细胞增殖Nanog基因转染的小鼠3T3细胞和人293细胞增殖明显加快,并且能够在软琼脂上以非锚着依赖性方式进行克隆生长[5, 6, 7]。Nanog基因转染的人293细胞还能够在裸鼠体内致瘤[7],说明Nanog过表达可能导致人293细胞发生恶性转化。Nanog过表达也可促进肿瘤细胞生长。Nanog基因转染促进乳腺癌细胞克隆形成和增殖,而Nanog基因敲除则明显抑制乳腺癌细胞生长[8]。Nanog过表达促进(而敲除Nanog抑制)肺癌细胞克隆形成和增殖能力[9]。Nanog可能通过参与调控细胞周期进展发挥促增殖作用。Nanog基因敲除导致多种细胞周期相关蛋白包括cyclin D1表达下降[10]。Nanog可结合到cyclin D1远端启动子区,介导其转录活化,加速细胞周期进展,从而促进细胞增殖。
2.2 Nanog与肿瘤细胞迁移和侵袭采用基因干扰Nanog表达抑制卵巢癌细胞迁移和侵袭。Nanog通过抑制下游基因E-cadherin和FOXJ1表达促进卵巢癌细胞迁移和侵袭[11]。Nanog还可通过上调Slug表达诱导上皮-间质转化(epithelial mesenchymal transition,EMT)发生,促进肺癌细胞体外迁移、侵袭和体内转移[9]。不同肝癌细胞的迁移能力与Nanog表达水平呈正相关。在Nanog低表达肝癌细胞中过表达Nanog诱导EMT发生,导致细胞侵袭能力增强,体内肿瘤生长和肝内转移也明显增加。Nanog直接结合Nodal启动子并上调其表达,激活Smad3信号通路促进肝癌细胞EMT[12]。采用MMTV-Cre/LoxP系统体内诱导小鼠乳腺组织过表达Nanog并不能够诱导乳腺癌发生,却可促进MMTV-Wnt1转基因小鼠乳腺癌细胞增殖和远端转移,并发现在Wnt1/Nanog双转基因小鼠中EMT相关基因PDGFα表达更高[13]。在结肠癌细胞中Nanog上调Slug和Snail表达促进EMT发生[14]。此外,Snail也可调控Nanog表达,表明两者直接存在正反馈调控作用[15]。Nanog还可通过结合FAK(focal adhesion kinase)而发生磷酸化,并且转录激活FAK表达,形成正反馈,促进结肠癌细胞侵袭[16]。
2.3 Nanog与肿瘤细胞耐药Nanog过表达可通过上调ABCB1表达水平促进肺癌细胞外排顺铂诱导耐药[9]。在乳腺癌和卵巢癌细胞中,Nanog通过与STAT3形成核内复合物,激活MDR1基因表达[17]。HA与CD44相互作用激活PKCε磷酸化Nanog,促进Nanog与STAT3结合,激活miR-21表达而抑制PCD4表达[18, 19]。Nanog表达在紫杉醇(Paclitaxel)耐药的卵巢癌细胞中比亲代细胞表达显著增加。HA与CD44v3相互作用还能够诱导Nanog与其他干细胞因子如Oct3/4和Sox2结合 ,通过转录激活miR-302抑制下游基因IAP表达,促进化疗耐药[20]。
2.4 Nanog与 肿瘤干细胞卵巢癌组织分离的CSC高表达Nanog,并且具有较强化疗耐药性[21]。MiR-214可通过调控p53/Nanog信号轴调控卵巢癌细胞耐药和干细胞形成[22, 23]。放疗诱导产生的乳腺癌CSC中Nanog表达显著增加[24]。结肠癌CSC中Nanog基因敲除抑制体外成球和体内致瘤能力,并且下调其他干细胞因子如Sox2和Oct3/4的表达[25]。结肠癌CSC中Nanog表达可能受c-Jun与β-catenin/TCF共同调控[26]。采用醛脱氢酶1(aldehyde dehydrogenase class 1,ALDH1)、CD44作为标志物分选或采用悬浮成球培养富集的胃癌干细胞中Nanog高表达,对化疗药物耐药性强,并且体内致瘤能力也更强[27]。CSC中Nanog启动子低甲基化。采用Nanog启动子控制GFP表达作为报告分子,从Huh7干细胞中分离的GFP阳性细胞高表达Nanog,低表达分化相关指标如ALB,具有CSC的特征如体外成球、体内致瘤和化疗耐药能力。Nanog通过调控IGF2/IGF1R信号途径参与肝癌CSC的维持[28, 29]。在肺癌、前列腺癌和胶质瘤干细胞中Nanog表达均有显著增加[30, 31, 32]。Siddique等报道Nanog通过诱导Aurora A激酶表达诱导NUMB蛋白磷酸化,从而抑制NUMB-p53复合物形成,降低p53蛋白稳定性,最终促进肿瘤干细胞的自我更新[33]。Chen等发现肺癌相关成纤维细胞释放的IGF2通过与IGF1R结合,诱导Akt磷酸化,激活Nanog表达,参与肺癌干细胞的干性维持[34],表明Nanog是参与肿瘤微环境旁分泌信号作用的重要分子。
2.5 Nanog与肿瘤免疫逃逸肿瘤细胞可通过适应机体的免疫系统而逃脱CTL细胞的杀伤作用。Noh等研究发现肿瘤免疫治疗可导致肿瘤细胞中Nanog表达增加[35],通过激活Tcl1a/Akt信号通路介导肿瘤细胞对CTL细胞的杀伤作用产生免疫耐受[36]。采用siRNA干扰Nanog表达则可逆转肿瘤细胞免疫逃逸,能够被CTL细胞识别,最终抑制肿瘤生长。Nanog/Tcl1a/Akt通路活化不仅促进肿瘤免疫逃逸,还能够增强肿瘤细胞的干性和转移能力。免疫逃逸后的肿瘤细胞发生EMT样转变,体外迁移、侵袭能力和体内肺转移明显增加 [37]。
3 Nanog在肿瘤诊断和治疗中的应用价值研究发现Nanog在多种肿瘤细胞及组织中存在表达,并且证实这些肿瘤细胞及组织中的Nanog 可能主要是来源于Nanog P8假基因的转录产物。Nanog表达与肿瘤分期、淋巴结转移和预后密切相关。与正常上皮组织相比,胃癌组织中Nanog1和Nanog P8表达增加[38]。Nanog高表达与淋巴结转移、肿瘤晚期分期和肿瘤分化程度低相关。Nanog高表达的胃癌患者5年存活率比低表达患者差,表明Nanog可能是促进胃癌恶性进展的重要因子[39]。Nanog高表达与乳腺癌患者预后不良相关。乳腺癌患者中Nanog基因表达水平与肿瘤大小、临床分期及淋巴结有无转移相关[40, 41]。在手术后经联合化疗的卵巢癌患者中,Nanog核内表达增加与卵巢癌患者耐药和生存率低相关[11]。在Ⅰ/Ⅱ期卵巢癌患者中,Nanog高表达的患者中位生存时间为40月,而Nanog低表达的患者中位生存时间为120月,表明Nanog表达水平可作为独立的预后评估指标。多因素分析揭示Nanog表达水平增加是结肠癌预后不良的独立预测指标[14]。Nanog表达增加与口腔鳞癌患者治疗耐药和预后差相关[42]。Nanog高表达非小细胞肺癌患者预后明显差于低表达患者[43, 44]。Nanog高表达与疾病进展(TNM Ⅲ/Ⅳ分期)相关。Nanog高表达是肝癌预后不良的分子标志物[28]。与正常肝细胞和正常组织相比,肝癌细胞和原代肝癌组织中Nanog1启动子甲基化程度明显降低。此外,采用siRNA或shRNA干扰Nanog表达体内外能够显著抑制肿瘤细胞生长和转移发生[8, 9, 25, 36]。最新研究发现采用TALEN和CRISPR/Cas9基因编辑技术 敲除Nanog基因具有抑制肿瘤生长、转移和增强化疗敏感度的效果[45, 46],提示Nanog可作为肿瘤治疗的潜在靶点。
4 展望目前研究表明Nanog是在肿瘤中起着重要作用的干细胞因子[47]。Nanog通过调控增殖、EMT、耐药、肿瘤干细胞以及免疫逃逸等多种机制参与肿瘤发生发展的多个环节。研究还发现多种肿瘤中激活的信号通路能够上调Nanog表达,增强肿瘤细胞转移能力和干性[15, 48, 49, 50]。临床研究证据亦证实Nanog表达水平可作为多种肿瘤患者的独立预后评估指标[38, 39, 40, 41, 42, 43, 44]。实验研究结果表明Nanog基因敲除、抑制Nanog表达及功能可单独或协同发挥肿瘤治疗性作用[36, 51, 52]。尽管Nanog在肿瘤中的研究仍有一些问题尚未完全阐明[53],如Nanog高表达是否能够导致上皮性肿瘤发生还有待进一步研究,Nanog在肿瘤微环境中的具体作用也不甚清楚,此外,目前对肿瘤细胞中Nanog基因异常激活和蛋白翻译后修饰的分子机制研究也相对较少。但是相信随着对这些关键问题研究地不断深入,将为全面揭示Nanog在肿瘤中的作用提供更多的实验证据,同时也为肿瘤分子诊断和靶向治疗提供新的思路和方法。
| [1] | Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell, 2003, 113(5): 631-42. |
| [2] | Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-55. |
| [3] | Do DV, Ueda J, Messerschmidt DM, et al. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo[J]. Genes Dev, 2013, 27(12): 1378-90. |
| [4] | Hyslop L, Stojkovic M, Armstrong L, et al. Down-regulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages[J]. Stem Cells, 2005, 23(8): 1035-43. |
| [5] | Zhang J, Wang X, Chen B, et al. Expression of Nanog gene promotes NIH3T3 cell proliferation[J]. Biochem Biophys Res Commun, 2005, 338(2): 1098-102. |
| [6] | Piestun D, Kochupurakkal BS, Jacob-Hirsch J, et al. Nanog transforms NIH3T3 cells and targets cell-type restricted genes[J]. Biochem Biophys Res Commun, 2006, 343(1): 279-85. |
| [7] | Lin YL, Han ZB, Xiong FY, et al. Malignant transformation of 293 cells induced by ectopic expression of human Nanog[J]. Mol Cell Biochem, 2011, 351(1-2): 109-16. |
| [8] | Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development[J]. Stem Cells, 2009, 27(5): 993-1005. |
| [9] | Chiou SH, Wang ML, Chou YT, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation[J]. Cancer Res, 2010, 70(24): 10433-44. |
| [10] | Han J, Zhang F, Yu M, et al. RNA interference mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells[J]. Cancer Lett, 2012, 321(1): 80-8. |
| [11] | Siu MK, Wong ES, Kong DS, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers [J]. Oncogene, 2012, 32(30): 3500-9. |
| [12] | Sun C, Sun L, Jiang K, et al. NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway[J]. Int J Biochem Cell Biol, 2013, 45(6): 1099-108. |
| [13] | Lu X, Mazur SJ, Lin T, et al. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis[J]. Oncogene, 2014, 33(20): 2655-64. |
| [14] | Meng HM, Zheng P, Wang XY, et al. Overexpression of Nanog predicts tumor progression and poor prognosis in colorectal cancer[J]. Cancer Biol Ther, 2010, 9(4): 295-302. |
| [15] | Liu CW, Li CH, Peng YJ, et al. Snail regulates Nanog status during the epithelial-mesenchymal transition via the Smad1/Akt/GSK3β signaling pathway in non-small-cell lung cancer[J]. Oncotarget, 2014, 5(11): 3880-94. |
| [16] | Ho B, Olson G, Figel S, et al. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated[J]. J Biol Chem, 2012, 287(22): 18656-73. |
| [17] | Bourguignon LY, Peyrollier K, Xia W, et al. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells[J]. J Biol Chem, 2008, 283(25): 17635-51. |
| [18] | Bourguignon LY, Spevak CC, Wong G, et al. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker nanog and the production of MicroRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem, 2009, 284(39): 26533-46. |
| [19] | Bourguignon LY, Earle C, Wong G, et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells[J]. Oncogene, 2012, 31(2):149-60. |
| [20] | Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma[J]. J Biol Chem, 2012, 287(39): 32800-24. |
| [21] | Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res, 2008, 68(11): 4311-20. |
| [22] | Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing nanog expression[J]. Nat Cell Biol, 2005, 7(2): 165-71. |
| [23] | Xu CX, Xu M, Tan L, et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog[J]. J Biol Chem 2012, 287(42): 34970-8. |
| [24] | Lagadec C, Vlashi E, Della Donna L, et al. Radiation-induced reprogramming of breast cancer cells[J]. Stem Cells, 2012, 30(5): 833-44. |
| [25] | Zhang J, Espinoza LA, Kinders RJ, et al. NANOG modulates stemness in human colorectal cancer[J]. Oncogene, 2013, 32(37): 4397-405. |
| [26] | Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms[J]. Stem Cells, 2012, 30(10): 2076-87. |
| [27] | Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 2009, 27(5): 1006-20. |
| [28] | Shan J, Shen J, Liu L, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma[J]. Hepatology, 2012, 56(3): 1004-14. |
| [29] | Lee TK, Castilho A, Cheung VC, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation[J]. Cell Stem Cell, 2011, 9(1): 50-63. |
| [30] | Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation[J]. Oncogene, 2011, 30(36): 3833-45. |
| [31] | Palla AR, Piazzolla D, Abad M, et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer[J]. Oncogene, 2014, 33(19): 2513-9. |
| [32] | Zbinden M, Duquet A, Lorente-Trigos A, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53[J]. EMBO J, 2010, 29(15): 2659-74. |
| [33] | Siddique HR, Feldman DE, Chen CL, et al. NUMB Phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by NANOG-dependent mechanism in liver cancer[J]. Hepatology, 2015, 62(5): 1466-79. |
| [34] | Chen WJ, Ho CC, Chang YL, et al. Cancer associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling[J]. Nat Commun, 2014, 5: 3472. |
| [35] | Noh KH, Kim BW, Song KH, et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion[J]. J Clin Invest, 2012, 122(11): 4077-93. |
| [36] | Noh KH, Lee YH, Jeon JH, et al. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype[J]. Cancer Res, 2012, 72(7): 1717-27. |
| [37] | Lee HJ, Noh KH, Lee YH, et al. NANOG signaling promotes metastatic capability of immunoedited tumor cells[J]. Clin Exp Metastasis, 2015, 32(5): 429-39. |
| [38] | Zhang J, Wang X, Chen B, et al. The human pluripotency gene NANOG/NANOGP8 is expressed in gastric cancer and associated with tumor development[J]. Oncol Lett, 2010, 1(3): 457-63. |
| [39] | Lin T, Ding YQ, Li JM. Overexpression of nanog protein is associated with poor prognosis in gastric adenocarcinoma[J]. Med Oncol, 2012, 29(2): 878-85. |
| [40] | Nagata T, Shimada Y, Sekine S, et al. Prognostic significance of NANOG and KLF4 for breast cancer [J]. Breast Cancer, 2014, 21(1): 96-101. |
| [41] | Wang D, Lu P, Zhang H, et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients [J]. Oncotarget, 2014, 5(21): 10803-15. |
| [42] | Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008, 14(13): 4085-95. |
| [43] | Li XQ, Yang XL, Zhang G, et al. Nuclear beta-catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer[J]. J Transl Med, 2013, 11: 114. |
| [44] | Du Y, Ma C, Wang Z, et al. Nanog, a novel prognostic marker for lung cancer[J]. Surg Oncol, 2013, 22(4): 224-9. |
| [45] | Ding Y, Yu AQ, Li CL, et al. TALEN mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells[J]. Oncotarget, 2014, 5(18): 8393-401. |
| [46] | Kawamura N, Nimura K, Nagano H, et al. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells[J]. Oncotarget, 2015, 6(26): 22361-74. |
| [47] | Iv Santaliz-Ruiz LE, Xie X, Old M, et al. Emerging role of nanog in tumorigenesis and cancer stem cells[J]. Int J Cancer, 2014, 135(12): 2741-8. |
| [48] | Paranjape AN, Balaji SA, Mandal T, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog[J]. BMC Cancer, 2014, 14: 785. |
| [49] | Kregel S, Szmulewitz RZ, Vander Griend DJ. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancercells[J]. Prostate, 2014, 74(15): 1530-43. |
| [50] | Gong S, Li Q, Jeter CR, et al. Regulation of NANOG in cancer cells[J]. Mol Carcinog, 2015, 54(9): 679-87. |
| [51] | Xie X, Piao L, Cavey GS, et al. Phosphorylation of Nanog is essential to regulate Bmi1 and pro-mote tumorigenesis[J]. Oncogene, 2014, 33(16): 2040-52. |
| [52] | Mattoo AR, Zhang J, Espinoza LA, et al. Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics[J]. Clin Cancer Res, 2014, 20(21): 5446-55. |
| [53] | Jeter CR, Yang T, Wang J, et al. Concise Review: NANOG inCancer Stem Cells and Tumor Development: An Update and Outstanding Questions[J]. Stem Cells, 2015, 33(8): 2381-90. |
2016, Vol. 43 No.4


