[1] |
Mihalache A, Rogoveanu I. Angiogenesis factors involved in the pathogenesis of colorectal cancer[J]. Curr Health Sci J, 2014, 40 (1): 5-11.
|
[2] |
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil,and leucovorin for metastatic colorectal cancer[J]. N Engl J Med, 2004, 350 (23): 2335-42.
|
[3] |
Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200[J]. J Clin Oncol, 2007, 25(12): 1539-44.
|
[4] |
Dotan E, Meropol NJ, Burtness B, et al. A phaseⅡstudy of capecit abine, oxaliplatin, and cetuximab with or without bevacizumab as frontline therapy for metastatic colorectal cancer. A Fox Chase extramural research study[J]. J Gastrointest Cancer, 2012, 43(4): 56 2-9.
|
[5] |
Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection[J]. Cancer Lett, 2008, 267(2): 204-15.
|
[6] |
Voronov E, Carmi Y, Apte RN. The role of IL-1 in tumormediated angiogenesis[J]. Front Physiol, 2014, 5: 114.
|
[7] |
Carmi Y, Dotan S, Rider P. The role of IL-1β in the early tumor cell-induced angiogenic response[J]. J Immunol, 2013, 190(7): 35 00-9.
|
[8] |
Etienne-Grimaldi MC, Formento P, Degeorges A. Prospective analysis of the impact of VEGF-A gene polymorphisms on the pharmacodynamics ofbevacizumab-based therapy in metastatic breast cancer patients[J]. Br J Clin Pharmacol, 2011, 71 (6): 921-8.
|
[9] |
Navid F, Baker SD, McCarville MB, et al. Phase I and clinical pharmacology study of bevacizumab, sorafenib, and low-dose cyclophosphamide in children and young adults with refractory/ recurrent solid tumors[J]. Clin Cancer Res, 2013, 19(1): 236-46.
|
[10] |
Dickson PV, Hamner JB, Sims TL, et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy[J]. Clin Cancer Res, 20 07, 13(13): 3942-50.
|
[11] |
Leguerney I, Lassau N, Koscielny S, et al. Combining functional imaging and interstitial pressure measurements to evaluate two anti-angiogenic treatments[J]. Invest New Drugs, 2012, 30(1): 14 4-56.
|
[12] |
Turley RS, Fontanella AN, Padussis JC, et al. Bacizumabinduced alterations in vascular permeability and drug delivery: a novel approach to augment regional chemotherapy for in-transit melanoma[J]. Clin Cancer Res, 2012, 18(12): 3328-39.
|
[13] |
Dani M, Vojnovic B, Newman R, et al. Bevacizumab, a vascular endothelial growth factor (VEGF) specific antibody reduces interstitial fluid pressure (IFP) in human rectal cancer xenograft (HT29) by day 5: is this evidence for rescheduling its timing relative to chemotherapy?[J]. J Clin Oncol, 2007, 25(18 Suppl): 4043.
|
[14] |
Yanagisawa M, Yorozu K, Kurasawa M, et al. Bevacizumab improves the delivery and efficacy of paclitaxel[J]. Anticancer Drugs, 2010, 21(7): 687-94.
|