[1] |
Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy[J]. Ther Adv Hematol, 2013, 4(3): 19 9-210.
|
[2] |
Roti G, Stegmaier K. New Approaches to Target T-ALL[J]. Front Oncol, 2014, 4: 170.
|
[3] |
Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies[J]. J Pathol, 2011, 223(2): 262-73.
|
[4] |
Paganin M, Ferrando AA. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia[J]. Blood Rev, 2011, 25(2): 83-90.
|
[5] |
Tatarek J, Cullion K, Ashworth T, et al. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL[J]. Blood, 2011, 118(6): 1579-90.
|
[6] |
Arnett KL, Hass M, McArthur DG, et al. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes[J]. Nat Struct Mol Biol, 2010, 17(11): 13 12-7.
|
[7] |
Zage PE, Nolo R, Fang W, et al. Notch pathway activation induces neuroblastoma tumor cell growth arrest[J]. Pediatr Blood Cancer, 2012, 58(5): 682-9.
|
[8] |
Wendorff AA, Koch U, Wunderlich FT, et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation[J]. Immunity, 2010, 33 (5): 671-84.
|
[9] |
Kannan S, Fang W, Song G, et al. Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression[J]. Blood, 2011, 117(10): 2891-900.
|
[10] |
Jernås M, Nookaew I, Wadenvik H, et al. MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP) [J]. Blood, 2013, 121(11): 2095-8.
|
[11] |
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review[J]. EMBO Mol Med, 2012, 4(3): 143-59.
|
[12] |
Mavrakis KJ, Van Der Meulen J, Wolfe AL, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)[J]. Nat Genet, 2011, 43(7): 67 3-8.
|
[13] |
Chen SS, Claus R, Lucas DM, et al. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL[J]. Blood, 2011, 117(3): 862-71.
|
[14] |
Hu HB, Hu Q. ID4 methylation patterns in childhood T line and B line lymphocytic leukemia[J]. Zhongguo Dang Dai Er Ke Za Zhi, 20 10, 12: 940-2. [胡洪玻, 胡群. T系和B系急性淋巴细胞白血病 ID4甲基化状态分析[J]. 中国当代儿科杂志, 2010, 12: 940-2.]
|
[15] |
Prokopi M, Kousparou CA, Epenetos AA. The Secret Role of microRNAs in Cancer Stem Cell Development and Potential Therapy: A Notch-Pathway Approach[J]. Front Oncol, 2014, 4: 389.
|
[16] |
Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, et al. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis[J]. PLoS Biol, 2013, 11 (5): e1001554.
|
[17] |
Li SZ. The role of Notch signaling pathway in the mechanism of glioma pathogenesis[D]. Di Si Jun Yi Da Xue, 2013. [李三中. Notch信号途径在胶质瘤发病机制中的作用研究[D]. 第四军医 大学, 2013.]
|
[18] |
Xie X, Liu H, Wang M, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells[J]. Tumour Biol, 2015, 36(7): 5031-8.
|
[19] |
Li XR, Chu HJ, Lv T, et al. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer[J]. FEBS Lett, 2014, 588(17): 3298-307.
|
[20] |
He YJ, Wu JZ, Ji MH, et al. miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer[J]. Exp Ther Med, 2013, 5(3): 813-8.
|