[1] |
Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010[J]. CA Cancer J Clin, 2010, 60(5): 277-300.
|
[2] |
Bosch FX, Ribes J, Díaz M, et al. Primary liver cancer: worldwide incidence and trends[J]. Gastroenterology, 2004(5): S5-S16.
|
[3] |
Edwards BK, Ward E, Kohler BA, et al. Annual report tothe nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates[J]. Cancer, 2010, 116(3): 544-73.
|
[4] |
Kudo M, Okanoue T. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice manual proposed by the Japan Society of Hepatology[J]. Oncology, 2007, 72(Suppl 1): 2-15.
|
[5] |
Nadri S, Soleimani M, Kiani J, et al. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells[J]. Differentiation, 2008, 76(3): 223-31.
|
[6] |
Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features[J].Gastroenterology, 2009, 136(3): 1012-24.
|
[7] |
Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas[J]. N Engl J Med, 20 10, 363(16): 1532-43.
|
[8] |
Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor?[J]. Cancer Discov, 2013, 3(1): 35 -43.
|
[9] |
Gui Y, Guo G, Huang Y, et al. Frequent mutations of chro-matin remodeling genes in transitional cell carcinoma of the bladder[J]. Nat Genet, 2011, 43(9): 875-8.
|
[10] |
Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer[J]. Nat Genet, 2011, 43(12): 1219-23.
|
[11] |
Chiou SH, Wang ML, Chou YT, et al. Coexpression of oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymaltransdifferentiation[ J] Cancer Res, 2010, 70(24): 10433-44.
|
[12] |
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer, 2005, 5(4): 275-84.
|
[13] |
Yoshida M, Suzuki T, Komiya T, et al. Induction of MRP5 and SMRP mRNA by adriamycin exposure and its overexpression in human lung cancer cells resistant to adriamycin[J]. Int J Cancer, 20 01, 94(3): 432-7.
|
[14] |
Livingston DM, Silver DP. Cancer: crossing over to drug resistance[J]. Nature, 2008, 451(7182): 1066-7.
|
[15] |
Boyault S, Rickman DS, deReyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[J]. Hepatology, 2007, 45(1): 42-52.
|
[16] |
Kuphal F, Behrens J. E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells butdoes not alter Wntindependent gene expression in fibroblasts[J]. Exp Cell Res, 2006, 31 2(4): 457-67.
|
[17] |
Yuan F, Zhou W, Zou C, et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways[J]. Mol Cell Biochem, 2010, 343(1-2): 155-62.
|
[18] |
Ding Sun, Lei Qin, Yang Xu, et al.Influence of adriamycin on changes in Nanog, Oct-4, Sox2, ARID1 and Wnt5b expression in liver cancer stem cells[J]. World J Gastroenterol, 2014, 20(22): 69 74-80.
|
[19] |
Hart AH, Harttley K, Parker K, et al. The pluripotencyhomebox gene NANOG is expressed in human germ cell tumors[J]. Cancer, 20 05, 104(10): 2092-8.
|
[20] |
Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-55.
|
[21] |
Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008, 14(13): 40 85-95.
|
[22] |
Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells[J]. Nat Genet, 2006, 38(4): 431-40.
|
[23] |
Wu Da Y, Yao Z. Isolation and characterization of the murine Nanog gene promoter[J]. Cell Res, 2005, 15(5): 317-24.
|
[24] |
Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression[J]. Nat Cell Biol, 2005, 7(2): 165-71.
|
[25] |
Piestun D, Kochupurakkal BS, Jacob-Hirsch J, et al. Nanog transforms NIH3T3 cells and targets cell-type restricted genes[J]. Biochem Biophys Res Commun, 2006, 343(1): 279-85.
|
[26] |
Shi Y, Sun G, Zhao C, et al. Neural stem cell self-renewl[J]. Crit Rev Oncol Hematol, 2008, 65(1): 43-53.
|
[27] |
Avilion AA, Nicolis SK, Pevny LH, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes Dev, 2003, 17(1): 126-40.
|
[28] |
Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy[J]. Ann Surg Oncol, 20 09, 16(12): 3488-98.
|
[29] |
Otsubo T, Akiyama Y, Yanagihara K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis[J]. Br J Cancer, 2008, 98(4): 824-31.
|
[30] |
Lengerke C, Fehm T, Kurth R, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma [J]. BMC Cancer, 2011, 11: 42.
|
[31] |
Ge N, Lin HX, Xiao XS, et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma[J]. J Transl Med, 2010, 8: 94.
|
[32] |
Sholl LM, Barletta JA, Yeap BY, et al. Sox2 protein expression is an independent poor prognostic indicator in stageⅠlung adenocarcinoma[J]. Am J Surg Pathol, 2010, 34(8): 1193-8.
|
[33] |
Ye F, Li Y, Hu Y, et al. Expression of Sox2 in human ovarian epithelial carcinoma[J]. J Cancer Res Clin Oncol, 2011, 137(1): 131-7.
|
[34] |
Chen Y, Shi L, Zhang L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer[J]. J Biol Chem, 2008, 283(26): 17969-78.
|
[35] |
Park ET, Gum JR, Kakar S, et al. Aberrant expression of SOX2 upregulates MUC5AC gastric foveolarmucin in mucinous cancers of the colorectum and related lesions[J]. Int J Cancer, 2008, 12 2(6): 1253-60.
|