高级搜索

叶酸对正常人成纤维细胞及黑色素瘤细胞端粒长度及基因组稳定性的影响

王晗, 倪娟, 周滔, 汪旭

王晗, 倪娟, 周滔, 汪旭. 叶酸对正常人成纤维细胞及黑色素瘤细胞端粒长度及基因组稳定性的影响[J]. 肿瘤防治研究, 2015, 42(12): 1188-1191. DOI: 10.3971/j.issn.1000-8578.2015.12.004
引用本文: 王晗, 倪娟, 周滔, 汪旭. 叶酸对正常人成纤维细胞及黑色素瘤细胞端粒长度及基因组稳定性的影响[J]. 肿瘤防治研究, 2015, 42(12): 1188-1191. DOI: 10.3971/j.issn.1000-8578.2015.12.004
WANG Han, NI Juan, ZHOU Tao, WANG Xu. Effect of Folic Acid on Telomere Length and Genome Stability of Normal Human Fiber Cell and Melanoma Cell in vitro[J]. Cancer Research on Prevention and Treatment, 2015, 42(12): 1188-1191. DOI: 10.3971/j.issn.1000-8578.2015.12.004
Citation: WANG Han, NI Juan, ZHOU Tao, WANG Xu. Effect of Folic Acid on Telomere Length and Genome Stability of Normal Human Fiber Cell and Melanoma Cell in vitro[J]. Cancer Research on Prevention and Treatment, 2015, 42(12): 1188-1191. DOI: 10.3971/j.issn.1000-8578.2015.12.004

叶酸对正常人成纤维细胞及黑色素瘤细胞端粒长度及基因组稳定性的影响

基金项目: 国家自然科学基金(31260268,31560307)
详细信息
    作者简介:

    王晗(1990-)女,硕士在读,主要从事营养基因组学方向的研究

    通讯作者:

    汪旭,E-mail: wangxu@fudan.edu.cn

  • 中图分类号: R730.2

Effect of Folic Acid on Telomere Length and Genome Stability of Normal Human Fiber Cell and Melanoma Cell in vitro

  • 摘要: 目的 探讨叶酸(folic acid, FA)缺乏-充足条件,对皮肤来源的人正常和癌细胞株的端粒长度及基因组稳定性的影响。方法 含FA 30~3 000 nmol/L的培养液干预培养人正常皮肤成纤维细胞株BJ及黑色素瘤细胞株A375 21天,以RT-qPCR技术分析受试细胞端粒绝对长度(absolute telomere length,aTL),以胞质分裂阻断微核细胞组实验(CBMN-Cyt)的染色体不稳定性(Chromosomal instability,CIN)指标来评价基因组稳定性改变情况。结果 BJ细胞在FA 30 nmol/L,端粒长度随干预时间延长呈现异常增长或缩短,CIN率明显上升(P<0.05),在FA 100~300 nmol/L时,端粒长度、CIN率与FA浓度呈正相关;在FA 1 000 nmol/L时,端粒长度改变较小,CIN率维持不变。A375细胞在FA 30、300~3 000nmol/L时,端粒长度在15天时增长、21天时缩短的趋势(P<0.05),CIN率在FA30 nmol/L时显著升高(P=0.013)。结论 A375细胞的端粒与基因组稳定性变化对于叶酸没有明显依赖;叶酸缺乏在正常细胞BJ中会诱发端粒长度的异常和基因组不稳定性。

     

    Abstract: Objective To discuss the effect and differences of deficient and sufficient folic acid (FA) on the telomere length and genome stability of normal human skin cells and malignant skin cells. Methods Normal human fiber cell line BJ and malignant melanoma cell line A375 were cultured in the medium containing different concentration of FA(30-3 000nmol/L)for 21d to test the absolute telomere length (aTL) using improved method of RT-qPCR. Genome stability was evaluated by chromosome instability (CIN) indexes, CBMN-Cyt. Results At FA 30nmol/L, the telomere length of BJ cells presented abnormal growth or shortening with the extension of intervention time, and chromosomal instability(CIN) rate was significantly decreased (P<0.05); at FA 100-300nmol/L, the telomere length and CIN rate appeared positive correlation with FA concentration; at FA 1 000nmol/L, the telomere length and CIN rate remained stability. At FA 30-3000nmol/L, the telomere length of A375 cells showed a trend of increase in 15d while shortening in 21d (P<0.05); at FA 30nmol/L, CIN rate were significantly increased (P=0.013). Conclusion The changes of telomere length and genome stability of A375 cells do not significantly depend on folic acid. FA deficiency in BJ cells would induce the abnormal telomere length and genome instability.

     

  • [1] Williams JM, Ouenzar F, Lemon LD, et al. The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres[J]. Genetics, 2014, 197(4): 1123-36.
    [2] Pal J, Gold JS, Munshi NC, et al. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target[J]. Transl Res, 2013, 162(6): 364-70.
    [3] Shen M, Cawthon R, Rothman N, et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer[J]. Lung Cancer, 2011, 73(2): 133-7.
    [4] Renaud S, Loukinov D, Abdullaev Z, et al. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene[J]. Nucleic Acids Res, 2007, 35(4): 1245-56.
    [5] Shay JW, Wright WE. Role of telomeres and telomerase in cancer[J]. Semin Cancer Biol, 2011, 21(6): 349-53.
    [6] Jones MJ, Jallepalli PV. Chromothripsis: chromosomes in crisis[J]. Dev Cell, 2012, 23(5): 908-17.
    [7] Hartwig FP, Bertoldi D, Larangeira M, et al. Up-Regulating Telomerase and Tumor Suppressors: focusing on anti-aging interventions at the population level[J]. Aging and Dis, 2014, 5(1): 17 -26.
    [8] Willeit P, Willeit J, Mayr A, et al. Telomere length and risk of incident cancer and cancer mortality[J]. JAMA, 2010, 304(1): 69 -75.
    [9] Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins[J]. Nat Rev Cancer, 20 11, 11(3): 161-76.
    [10] Harte AL, da Silva NF, Miller MA, et al. Telomere length attrition, a marker of biological senescence, is inversely correlated with triglycerides and cholesterol in South Asian males with type 2 diabetes mellitus[J]. Exp Diabetes Res, 2012, 2012: 895185.
    [11] Mitteldorf JJ. Telomere biology: Cancer firewall or aging clock?[J]. Biochemistry (Mosc), 2013, 78(9): 1054-60.
    [12] Moores CJ, Fenech M, O’Callaghan NJ. Telomere dynamics: the influence of folate and DNA methylation[J]. Ann N Y Acad Sci, 20 11, 1229(1): 76-88.
    [13] Zhou J, Ding D, Wang M, et al. Telomerase reverse transcriptase in the regulation of gene expression[J]. BMB Rep, 2014, 47(1): 8-14.
    [14] Paul L. Diet, nutrition and telomere length[J]. J Nutritional Biochem, 2011, 22(10): 895-901.
    [15] Liu J J, Prescott J, Giovannucci E, et al. One-carbon metabolism factors and leukocyte telomere length[J]. Am J Clin Nutr, 2013, 97 (4): 794-9.
    [16] Wa n g X , F e n e c h M . A c o m p a r i s o n o f f o l i c a c i d a n d 5- methyltetrahydrofolate for prevention of DNA damage and cell death in human lymphocytes in vitro[J]. Mutagenesis, 2003, 18 (1): 81-6.
    [17] O’Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length[J]. Biol Proced Online, 2011, 13:3.
    [18] Fenech M. Cytokinesis-block micronucleus cytome assay[J]. Nat Protoc, 2007, 2(5): 1084-104.
    [19] Günes C, Rudolph KL. The role of telomeres in stem cells and cancer[J]. Cell, 2013, 152(3): 390-3.
    [20] Gallardo F, Laterreur N, Wellinger RJ, et al. Telomerase caught in the act: united we stand, divided we fall[J]. RNA Biol, 2012, 9(9): 11 39-43.
    [21] Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging[J]. Trends Genet, 2013, 29(9): 513-20.
    [22] Fairlie J, Harrington L. Enforced telomere elongation increases the sensitivity of human tumour cells to ionizing radiation[J]. DNA Repair(Amst), 2015, 25: 54-9.
    [23] Harrington L. Haploinsufficiency and telomere length homeostasis[J]. Mutat Res, 2012, 730(1-2): 37-42.
计量
  • 文章访问数:  1422
  • HTML全文浏览量:  368
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 修回日期:  2015-06-14
  • 刊出日期:  2015-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭