[1] |
Gordon S, Martinez FO. Alternative activation of macrophages: Mechanism and functions[J]. Immunity, 2010, 32(5): 593-604.
|
[2] |
Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14 (10): 986-95.
|
[3] |
Murray PJ, Wynn TA. Protective and pathogenic functions ofmacrophage subsets[J]. Nat Rev Immunol, 2011, 11(11): 723-37.
|
[4] |
Germano G, Frapolli R, Belgiovine C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 20 13, 23(2): 249-62.
|
[5] |
Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas[J]. J Clin Invest, 2012, 122 (3): 787-95.
|
[6] |
Hao NB, Lu M H, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors[J]. Clin Dev Immunol, 2012, 2012: 948098.
|
[7] |
Coffelt SB, Tal AO, Scholz A, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions[J]. Cancer Res, 2010, 70(13): 52 70-80.
|
[8] |
Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V, et al. Monocyte subpopulations in angiogenesis[J]. Cancer Res, 2014, 74 (5): 1287-93.
|
[9] |
Liao Q, Zeng Z, Guo X, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation[J]. Oncogene, 2014, 33(16): 2098-109.
|
[10] |
Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes[J]. Cancer Res, 2010, 70 (14): 5728-39.
|
[11] |
Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J]. Nature, 2011, 47 5(7355): 222-5.
|
[12] |
Sierra-Filardi E, Nieto C, Dominguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-dependent gene expression profile[J]. J Immunol, 20 14, 192(8): 3858-67.
|
[13] |
Kobayashi N, Miyoshi S, Mikami T, et al. Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization[J]. Cancer Res, 2010, 70(18): 7073-83.
|
[14] |
Gocheva V, Wang HW, Gadea BB, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion[J]. Genes Dev, 2010, 24(3): 241-55.
|
[15] |
Gil-Bernabé AM, Ferjancic S, Tlalka M, et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice[J]. Blood, 2012, 119(13): 3164-75.
|
[16] |
Solinas G, Schiarea S, Liguori M, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: A new marker for M2-polarization, influencing tumor cell motility[J]. J Immunol, 2010, 185(1): 642-52.
|
[17] |
Casazza A, Laoui D, Wenes M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity[J]. Cancer Cell, 2013, 24(6): 695-709.
|
[18] |
Hiratsuka S, Ishibashi S, Tomita T, et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci[J]. Nat Commun, 2013, 4: 1853.
|
[19] |
Hiratsuka S, Goel S, Kamoun WS, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation[J]. Proc Natl Acad Sci U S A, 2011, 108(9): 3725-30.
|
[20] |
Eubank TD, Roda JM, Liu H, et al. Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes[J]. Blood, 2011, 117(1): 323-32.
|
[21] |
Zaynagetdinov R, Sherrill TP, Polosukhin VV, et al. A critical role for macrophages in promotion of urethane-induced lung carcinogenesis[J]. J Immunol, 2011, 187(11): 5703-11.
|
[22] |
Gordon S, Mantovani A. Diversity and plasticity of mononuclear phagocytes[J]. Eur J Immunol, 2011, 41(9): 2470-2.
|
[23] |
Laoui D, van Overmeire E, di Conza G, et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population[J]. Cancer Res, 2014, 74(1): 24-30.
|
[24] |
Yi L, Xiao H, Xu M, et al. Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma[J]. J Neuroimmunol, 2011, 232(1-2): 75-82.
|
[25] |
Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway[J]. Stem Cells, 2013, 31 (2): 24 8-58.
|
[26] |
Okuda H, Kobayashi A, Xia B, et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells[J]. Cancer Res, 2012, 72(2): 537-47.
|
[27] |
Cieslewicz M, Tang J, Yu JL, et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival[J]. Proc Natl Acad Sci U S A, 2013, 110(40): 15919-24.
|
[28] |
Mok S, Koya RC, Tsui C, et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transferimmunot herapy[J]. Cancer Res, 2014, 74(1): 153-61.
|
[29] |
Ries CH, Cannarile MA, Hoves S, et al. Targeting tumorassociated macrophages with Anti-CSF-1R antibody reveals a strategy for cancer therapy[J]. Cancer Cell, 2014, 25(6): 846-59.
|
[30] |
Shime H, Matsumoto M, Oshiumi H, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors[J]. Proc Natl Acad Sci U S A, 2012, 109(6): 2066-71.
|
[31] |
Zhang X, Tian W, Cai X, et al. Hydrazinocurcumin encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression[J]. PLoS One, 2013, 8(6): e65896.
|
[32] |
Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF[J]. Cancer Cell, 20 11, 19(1): 31-44.
|