高级搜索

p53β异构体在rmhTNF联合顺铂抑制胃癌细胞增殖中的作用

袁明亮, 高志星, 任盼盼, 郭爱, 季万胜

袁明亮, 高志星, 任盼盼, 郭爱, 季万胜. p53β异构体在rmhTNF联合顺铂抑制胃癌细胞增殖中的作用[J]. 肿瘤防治研究, 2015, 42(11): 1075-1080. DOI: 10.3971/j.issn.1000-8578.2015.11.004
引用本文: 袁明亮, 高志星, 任盼盼, 郭爱, 季万胜. p53β异构体在rmhTNF联合顺铂抑制胃癌细胞增殖中的作用[J]. 肿瘤防治研究, 2015, 42(11): 1075-1080. DOI: 10.3971/j.issn.1000-8578.2015.11.004
YUAN Mingliang, GAO Zhixing, REN Panpan, GUO Ai, JI Wansheng. Role of p53β Isoform in Inhibitory Effect of rmhTNF Combined with Cisplatin on Human Gastric Cancer Cell Growth[J]. Cancer Research on Prevention and Treatment, 2015, 42(11): 1075-1080. DOI: 10.3971/j.issn.1000-8578.2015.11.004
Citation: YUAN Mingliang, GAO Zhixing, REN Panpan, GUO Ai, JI Wansheng. Role of p53β Isoform in Inhibitory Effect of rmhTNF Combined with Cisplatin on Human Gastric Cancer Cell Growth[J]. Cancer Research on Prevention and Treatment, 2015, 42(11): 1075-1080. DOI: 10.3971/j.issn.1000-8578.2015.11.004

p53β异构体在rmhTNF联合顺铂抑制胃癌细胞增殖中的作用

基金项目: 山东省优秀中青年科学家科研奖励基金(BS2010SW034)
详细信息
    作者简介:

    袁明亮(1990-),男,硕士在读,主要从事胃癌的基础和临床研究

    通讯作者:

    季万胜,E-mail: jiwsh@wfmc.edu.cn

  • 中图分类号: R735.2

Role of p53β Isoform in Inhibitory Effect of rmhTNF Combined with Cisplatin on Human Gastric Cancer Cell Growth

  • 摘要: 目的 探讨p53β异构体在rmhTNF联合顺铂干预人胃癌细胞MKN45和SGC7901生长实验中的生物学功能。方法 不同浓度rmhTNF单独或联合顺铂作用于人胃癌细胞MKN45和SGC7901,应用细胞增殖/毒性检测试剂盒(CCK-8试剂盒)检测抑制率;巢式反转录多聚酶链反应(RT-PCR)检测p53β和bcl-2 mRNA的表达变化情况。结果 rmhTNF单独或联合顺铂(4 μg/ml)作用MKN45细胞24 h,联合组抑制率大于单独组,且随rmhTNF浓度的增加而增加,组间差异有统计学意义(P<0.05);在SGC7901细胞中,联合组抑制率虽有增加但差异无统计学意义(P>0.05)。rmhTNF单独使用对MKN45细胞中p53β和bcl-2表达无影响,差异无统计学意义(F=0.006,P>0.05;F=1.179, P>0.05),而与顺铂联合作用可明显上调p53β和下调bcl-2的表达,并且随rmhTNF浓度的增加,p53β逐渐增加,bcl-2逐渐减少,差异有统计学意义(F=18.577,P<0.01;F=169.309, P<0.01)。在SGC7901细胞中未见p53β表达,但bcl-2高表达。rmhTNF和顺铂单独或联合作用时bcl-2虽有降低但差异无统计学意义(F=1.340, P>0.05)。p53β与bcl-2表达呈负相关(r=-0.897, P<0.01),细胞抑制率与bcl-2的表达呈负相关(r=-0.906, P<0.01)。结论 rmhTNF和顺铂对p53β阳性的胃癌细胞MKN45表现出明显的抑制效应且rmhTNF和顺铂联合作用时可表现出协同抗肿瘤作用,其协同抗肿瘤效应可能是通过p53β调节下游分子bcl-2实现的。

     

    Abstract: Objective To investigate the biological function of p53β isoform, in the experiment that rmhTNF combined with cisplatin intervene in the growth of human gastric cancer cells MKN45 and SGC7901. Methods CCK-8 assay was applied to detect inhibition rates of gastric cancer cells MKN45 and SGC7901 interfered by different concentrations of rmhTNF alone or in combination with cisplatin. The change of p53βand bcl-2 mRNA expression were detected by Nested reverse transcription polymerase chain reaction(RTPCR). Results After different concentrations of rmhTNF alone or in combination with cisplatin(4μg/ml) intervened in MKN45 cells for 24h, the inhibition rate of combination group was higher than that of single group. The inhibition rate was increased with rmhTNF concentrations, with statistically significant difference between groups(P<0.05); in SGC7901 cells, the inhibition rate of combination group was increased but the difference was not statistically significant(P>0.05). rmhTNF alone had no effect on the expression of bcl-2 and p53β mRNA in MKN45 cells, and the difference was not statistically significant(F=0.006, P>0.05;F=1.179, P>0.05), but in combination with cisplatin could significantly upregulate p53β expression and downregulate bcl-2 expression and with the increasing concentrations of rmhTNF, p53β expression was gradually increased, bcl-2 expression was decreased, with statistically significant difference(F=18.577, P<0.01; F=169.309, P<0.01). The expression of p53β in SGC7901 cells was not observed, but blc-2 was over-expressed. When rmhTNF alone or in combination with cisplatin on SGC7901 cells, bcl-2 expression was reduced but the difference was not statistically significant(F=1.340, P>0.05). p53β and bcl-2 expression were negatively correlated(r=-0.897, P<0.01) and the inhibition rate was negatively correlated with bcl-2 expression(r=-0.906, P<0.01). Conclusion rmhTNF and cisplatin have significant inhibitory effect on p53β-positive gastric cancer cells MKN45. rmhTNF combined with cisplatin could exhibit synergistic antitumor which may be through p53β regulating its downstream molecules bcl-2 expression.

     

  • [1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005, 55(2) :74-108.
    [2] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
    [3] Gill RS, Al-Adra DP, Nagendran J, et al. Treatment of gastric cancer with peritoneal carcinomatosis by cytoreductive surgery and HIPEC: a systematic review of survival, mortality, and morbidity[J]. Surg Oncol, 2011, 104(6): 692-8.
    [4] Zhang D, Fan D. Multidrug resistance in gastric cancer: recent research advances and ongoing therapeutic challenges[J]. Expert Rev Anticancer Ther, 2007, 7(10): 1369-78.
    [5] Zhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives[J]. Future Oncol, 2010, 6(4): 527-37.
    [6] Silden E, Hjelle SM, Wergeland L, et al. Expression of TP53 isoforms p53beta or p53gamma enhances chemosensitivity in TP53(null) cell lines[J]. PLoS One, 2013, 8(2): e56276.
    [7] Marcel V, Fernandes K, Terrier O, et al. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response[J]. Cell Death Differ, 2014, 21(9): 13 77-87.
    [8] Li M, Xu T, Zhang Z, et al. Phase Ⅱ multicenter, randomized, double-blind study of recombinant mutated human tumor necrosis factor-α in combination with chemotherapies in cancer patients[J]. Cancer Sci, 2012, 103(2): 288-95.
    [9] Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders[J]. J Clin Invest, 2001, 107(3): 24 7-54.
    [10] Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily[J]. Biochem Phramacol, 2003, 66(8): 1403-8.
    [11] Wang Y, Wang X, Zhao H, et al. Clusterin confers resistance to TNF-alpha-induced apoptosis in breast cancer cells through NFkappaB activation and Bcl-2 overexpression[J]. J Chemother, 20 12, 24(6): 348-57.
    [12] el-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site for p53[J]. Nat Genet, 1992, 1(1): 45-9.
    [13] Bourdon JC, Deguin-Chambon V, Lelong JC, et al. Further characterisation of the p53 responsive element: identification of new candidate genes for trans-activation by p53[J]. Oncogene, 19 97, 14(1): 85-94.
    [14] Ju WK, Lindsey JD, Angert M, et al. Glutamate receptor activation triggers OPA1 release and induces apoptotic cell death in ischemic rat retina[J]. Mol Vis, 2008, 14: 2629-38.
    [15] Lane D, Levine A. p53 research: the past thirty years and the next thirty years[J]. Cold Spring Harb Perspect Biol, 2010, 2(12): a000893.
    [16] Bourdon JC, Fernandes K, Murray-Zmijewski F, et al. p53 isoforms can regulate p53 transcriptional activity[J]. Genes Dev, 20 05, 19(18): 2122-37.
    [17] Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor?[J]. Genes Cancer, 2011, 2(4): 453-65.
    [18] Avery-Kiejda KA, Morten B, Wong-Brown MW, et al. The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome[J]. Carcinogenesis, 2014, 35 (3): 586-96.
    [19] Marcel V, Dichtel-Danjoy ML, Sagne C, et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models[J] .Cell Death Differ, 2011, 18 (12): 1815-24.
    [20] Tanabe K, Kim R, Inoue H, et al. Antisense Bcl-2 and HER-2 oligonucleotide treatment of breast cancer cells enhances their sensitivity to anticancer drugs[J]. Int J Oncol, 2003, 22(4): 87 5-81.
计量
  • 文章访问数:  1131
  • HTML全文浏览量:  283
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭