高级搜索

滑膜肉瘤相关发病机制的研究进展

贾志峰, 郑丽华, 赵亚恒, 冯建刚

贾志峰, 郑丽华, 赵亚恒, 冯建刚. 滑膜肉瘤相关发病机制的研究进展[J]. 肿瘤防治研究, 2015, 42(07): 716-719. DOI: 10.3971/j.issn.1000-8578.2015.07.016
引用本文: 贾志峰, 郑丽华, 赵亚恒, 冯建刚. 滑膜肉瘤相关发病机制的研究进展[J]. 肿瘤防治研究, 2015, 42(07): 716-719. DOI: 10.3971/j.issn.1000-8578.2015.07.016
JIA Zhifeng, ZHENG Lihua, ZHAO Yaheng, FENG Jiangang. Advances in Pathogenesis of Synovial Sarcoma[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 716-719. DOI: 10.3971/j.issn.1000-8578.2015.07.016
Citation: JIA Zhifeng, ZHENG Lihua, ZHAO Yaheng, FENG Jiangang. Advances in Pathogenesis of Synovial Sarcoma[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 716-719. DOI: 10.3971/j.issn.1000-8578.2015.07.016

滑膜肉瘤相关发病机制的研究进展

详细信息
    作者简介:

    贾志峰(1974-),男,学士,主治医师,主要从事骨与软组织肿瘤的诊治

    通讯作者:

    赵亚恒,E-mail: Zhaoyaheng@126.com

  • 中图分类号: R738.5

Advances in Pathogenesis of Synovial Sarcoma

  • 摘要: 滑膜肉瘤(synovial sarcoma, SS)是源于关节、滑膜及腱鞘滑膜的软组织恶性肿瘤,因其在关节周围的经典表现而得名。滑膜肉瘤可发生在身体任何部位,但以四肢近关节处多见。95%的SS以t(X;18)(p11.2-q11.2)染色体易位为特点,形成融合基因SYT-SSX,从而通过Wnt/β-catenin、PcG和ERK等信号通路促进SS细胞发生。另外,TGF-β1、Smad、Snail和Slug通过EMT途径也参与SS的发生发展。除此之外SS的发病还涉及有许多因子改变,如Twist1、Bmi1等。近年来研究表明上述因素均和SS的发病机制有关。本文将对这些因素在SS发生发展方面的作用作一概述。

     

    Abstract: Synovial sarcoma(SS) is a soft tissue sarcoma, derived from the joint, synovial and synovial sheath, so named for its classic performance around the joints. Synovial sarcoma could occur in any part of the body, but more common in the joints of the limbs. 95% of SS is characterized by t (X; 18) (p11.2-q11.2) chromosomal translocation, form a fusion gene SYT-SSX, thus to promote the formation of SS cells by Wnt/β-catenin, PcG and ERK signaling pathways. Moreover, TGF-β1, Smad, Snail and Slug are also involved in the development of SS by EMT. In addition, the pathogenesis of SS also involves many other factors, such as Twist1, Bmi1, etc. Recent studies indicate that these factors above contribute to the pathogenesis of SS. In this paper, we will review the role of these factors in the genesis and development of SS.

     

  • 调强放疗时代(intensity-modulated roditherapy,IMRT),鼻咽癌的局控率已超过95%[1-2],5年总生存率达到80%以上[2-3],远处转移是治疗失败的主要原因[1-3]。在保证高局控率的基础上,如何进一步降低远处转移率,提高远期生存率是当前面临的问题。诱导化疗作为一种新的辅助治疗方式目前广泛应用于临床,但对于它的作用,仍存在争议[4-7]。本研究回顾性分析了广西医科大学第一附属医院收治的224例局部中晚期鼻咽癌患者资料,比较诱导化疗+IMRT同期化疗与IMRT同期化疗的疗效,观察诱导化疗能否改善鼻咽癌的预后。

    2008年10月至2010年12月在本院初治并经病理确诊的局部中晚期鼻咽癌患者,确诊时无远处转移。治疗前全部行鼻咽部+颈部MRI检查确定临床分期为Ⅲ、ⅣA、ⅣB期(2010UICC分期);均接受IMRT+同期化疗,同期化疗采用单药顺铂方案,化疗周期数均≥2。所有患者均未接受辅助化疗。

    共224例患者符合上述入组标准,其中男165例、女59例,年龄14~68岁,中位年龄45岁。临床分期为Ⅲ、ⅣA、ⅣB期的病例数分别为91、115、18。按是否行诱导化疗分为诱导化疗+同期放化疗组118例(诱导组)与同期放化疗组106例(同期组)。两组病例一般资料具有可比性,见表 1

    表  1  224例局部中晚期鼻咽癌患者临床特征分布(例)
    Table  1  Characteristics of 224 patients with locoregionally advanced nasopharyngeal carcinoma (n)
    下载: 导出CSV 
    | 显示表格

    全组病例均接受调强放疗。靶区勾画按照国际辐射单位与测量委员会(ICRU)相关规定执行。处方剂量:GTVnx 68~74 Gy,GTVnd 66~70 Gy,CTV1 60­~64 Gy,CTV2 50~56 Gy,每天1次,每周5次,共30~33次,照射时间为6~7周。危及器官限量参照RTOG相关规定。

    诱导化疗方案为TP(多西他赛75 mg/m2,第1天,顺铂80~100 mg/m2,第1~3天)或PF(氟尿嘧啶750 mg/m2,第1~5天,顺铂80~100 mg/m2,第1~3天)方案,以21天为1周期,均化疗2周期。同期放化疗在诱导化疗结束后3周开始。同期化疗采用单药顺铂三周方案(80~100 mg/m2,第1~3天,>90%的病例)或每周方案(40 mg/m2,第1天),三周方案化疗周期数≥2,每周方案化疗周期数≥4。

    近期疗效评价包括对诱导化疗疗效的评价(在诱导化疗结束时)以及对两组病例近期疗效的比较(在同期放化疗结束后3月),评价标准参考RECIST1.1。不良反应的评价标准参考NCI-CTC 3.0。按照RTOG标准评价放射损伤。计算5年OS、DFS、DMFS、RFS。

    随访时间为治疗后2年内,每3月复查一次,第3~5年每6月复查一次。复查项目包括鼻咽部+颈部MRI或CT、间接/直接鼻咽镜、胸片/胸部CT、腹部彩超、骨ECT、实验室检查等。

    采用SPSS19.0软件进行统计分析,两组间一般资料比较使用χ2 检验,不良反应比较使用秩和检验,用Kaplan-Meier法计算生存率,用Log rank检验比较生存曲线。P<0.05为差异有统计学意义。

    诱导化疗完成时,诱导组中12例达CR(10.2%),84例达PR(71.2%),22例为SD(18.6%),有效率为81.4%。同期放化疗结束后3月,诱导组中100例达CR(84.7%),18例为PR(15.3%);同期组中85例达CR(80.2%),21例为PR(19.8%)。两组有效率均为100%。两组近期疗效比较差异无统计学意义(P=0.369)。

    随访截止2015年12月,5年随访率为92.1%。全组5年OS、DFS、DMFS、RFS分别为83.0%、83.1%、87.1%、93.7%。诱导组与同期组的5年OS、DFS、DMFS、RFS对比,差异均无统计学意义。T3-4N0-1期患者中,诱导组(54例)与同期组(57例)相比,各项生存指标差异无统计学意义。将T1-4N2-3期患者中的诱导组(64例)与同期组(49例)进行比较,各项生存指标也均相近,差异无统计学意义。诱导方案TP(59例)与PF(59例)对比,各项生存指标的差异也无统计学意义,见表 2

    表  2  224例局部中晚期鼻咽癌不同治疗模式的远期疗效比较及亚组分析
    Table  2  Summary of long-term survival and subset analyses in 224 patients with locoregionally advanced NPC between NACT+CCRT and CCRT group
    下载: 导出CSV 
    | 显示表格

    无5级急性不良反应(死亡)发生。诱导组相比同期组明显增加了白细胞减少、中性粒细胞减少、血小板减少、血红蛋白减少、恶心、呕吐等不良反应,差异有统计学意义,见表 3

    表  3  224例局部中晚期鼻咽癌患者不同治疗模式的不良反应分布与比较
    Table  3  Treatment-related toxicities in 224 patients with locoregionally advanced NPC between NACT+CCRT and CCRT group
    下载: 导出CSV 
    | 显示表格

    全组224例病例中,治疗失败的有37例;其中单纯复发者9例(24.3%),单纯远处转移者24例(64.9%),复发合并远处转移者4例(10.8%)。死亡病例38例,其中16例(42.1%)死于单纯转移,4例(10.5%)死于复发合并转移,6例(15.8%)死于单纯复发,1例死于脑梗(2.6%),11例(28.9%)死亡原因不明。

    多项研究报道,治疗失败的局部中晚期鼻咽癌患者中发生远处转移的比例超过70%,是治疗失败的主要原因[8-9]。调强技术的应用,使鼻咽癌的局控率已超过95%[1-2];进一步提高局控率空间已不大,通过减少远处转移从而提高远期生存率成为共识。多项研究指出在同期放化疗基础上加入辅助化疗未带来生存获益[10-11]。而对于诱导化疗的疗效,各家报道不一。如Sun的研究报道诱导化疗可以提高DMFS[4],Song的荟萃分析结果也提示诱导化疗可显著提高PFS及DMFS[5]。然而Founmilas[6]的研究及Liang[7]的荟萃分析却指出诱导化疗并未改善预后。但这些研究纳入的大多数是常规放疗病例,调强放疗的病例不多,且只报道了2年或3年短期生存情况。在调强放疗时代,诱导化疗是否能改善局部中晚期鼻咽癌的远期预后,相关的报道不多。

    本研究显示在IMRT同期化疗的基础上加入诱导化疗并未明显提高5年OS、DFS、DMFS、RFS,这与近期的两个研究结果相同[9, 12]。治疗失败的病例中75.7%发生远处转移,死亡病例中至少52.6%的死因为远处转移,远处转移是治疗失败及死亡的主要原因。诱导化疗未带来远期生存获益的原因,笔者思考可能有以下几点:第一,以调强放疗为基础的同期放化疗使鼻咽癌的疗效较常规放疗时代已有显著提升,5年的OS已超过80%[2](本研究中全组病例5年OS为83%),进一步提高的难度较大。第二,本研究显示诱导化疗明显增加了血液系统及消化道等方面不良反应,这与之前的研究[9, 12]结果相似。而近来有报道,放化疗引起的不良反应是影响预后的不利因素[13]。诱导化疗虽增加了治疗强度,但导致了更严重的不良反应,而严重的不良反应可能抵消强化治疗带来的生存获益,制约生存率的进一步提高。第三,诱导化疗作为一种全身性的辅助治疗,理论上可在短期内缩小瘤体,提高肿瘤局控率;也可以消灭远处微转移病灶,降低远处转移率,从而提高远期生存率。本研究对以局部复发失败为主的T分期晚(T3-4N0-1)患者进行亚组分析显示,诱导组与同期组在各项生存指标的差异上虽都未达统计学意义,但都有明显差距,局控率(RFS)的提高较明显,OS更是接近达到统计学意义(P=0.054)。然而在以远处转移失败为主的N分期晚(N2-3)的患者中,两组在各项生存指标上均较接近,诱导化疗未表现出降低远处转移率的趋势。这表明诱导化疗的作用可能主要是在提高局控率方面,而对于减少远处转移作用不大。诱导化疗没有带来生存获益的原因是未能有效降低远处转移率。然而最近Du的大宗回顾性研究[14]指出诱导化疗对含有多个(≥2个)高危因素的患者有生存获益,能明显提高DMFS及PFS。这些高危因素包括:分期N2-3,EB病毒DNA>4 000拷贝每毫升,血清白蛋白≤46 g/L,血小板>300×109/L。因此,诱导化疗是否只对某些高危患者有生存获益?

    此外,本研究中的诱导化疗方案为PF和TP。但近来有报道TPF(多西他赛+顺铂+氟尿嘧啶)方案诱导化疗联合IMRT同期化疗治疗局部晚期鼻咽癌取得了不错的疗效[15]。Huang[16]的研究更是指出TPF方案优于PF方案。马俊[17]的Ⅲ期前瞻性研究也报道TPF方案诱导化疗可显著提高局部晚期鼻咽癌2年的无瘤生存率及无转移生存率,但该研究5年的远期随访结果尚未发布。另Zheng[18]的研究报道,GP(吉西他滨+顺铂)方案用于治疗局部晚期鼻咽癌优于TP、PF。因此本研究未获得阳性结果的原因是否与TP、PF方案化疗强度较弱有关?TPF或GP方案是否为治疗局部中晚期鼻咽癌的更好选择?仍有待Ⅲ期大宗前瞻性研究远期随访结果明确。

    综上所述,与IMRT同期化疗相比,诱导化疗加IMRT同期化疗未明显提高局部中晚期鼻咽癌患者的远期生存率,且血液系统、消化道等不良反应明显增加。诱导化疗在局部中晚期鼻咽癌治疗中的作用有待继续观察。识别高危人群或寻找更有效的化疗方案可能是未来的研究方向。

  • [1] Shi W, Indelicato DJ, Morris CG, et al. Long-term treatment outcomes for patients with synovial sarcoma: A 40-year experience at the University of Florida[J]. Am J Clin Oncol, 2013, 36 (1): 83-8.
    [2] Haldar M, Randall RL, Capecchi MR. Synovial sarcoma: from genetics to genetic-based animal modeling[J]. Clin Orthop Relat Res, 2008, 466(9): 2156-67.
    [3] Antonescu CR, Kawai A, Leung DH, et al. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma[J]. Diagn Mol Pathol, 2000, 9(1): 1-8.
    [4] Brett D, Whitehouse S, Antonson P, et al. The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localized in nuclear bodies[J]. Hum Mol Genet, 1997, 6(9): 1559-64.
    [5] Yoneda Y, Ito S, Kunisada T, et al. Truncated SSX protein suppresses synovial sarcoma cell proliferation by inhibiting the localization of SS18-SSX fusion protein[J]. PLoS One, 2013, 8( 10): e77564.
    [6] Cai W, Sun Y, Wang W, et al. The effect of SYT-SSX and extracellular signal-regulated kinase (ERK) on cell proliferation in synovial sarcoma[J]. Pathol Oncol Res, 2011, 17(2): 357-67.
    [7] Carmody Soni EE, Schlottman S, Erkizan HV, et al. Loss of SS18-SSX1 inhibits viability and induces apoptosis in synovial sarcoma[J]. Clin Orthop Relat Res, 2014, 472(3): 874-82.
    [8] Barham W, Frump AL, Sherrill TP, et al. Targeting the wnt pathway in synovial sarcoma models[J]. Cancer Discov, 2013, 3( 11): 1286-301.
    [9] Sinnberg T, Menzel M, Kaesler S, et al. Suppression of casein kinase 1alpha in melanoma cells induces a switch in beta-catenin signaling to promote metastasis[J]. Cancer Res, 2010, 70(17): 69 99-7009.
    [10] Elyada E, Pribluda A, Goldstein RE, et al. CKIα ablation highlights a critical role for p53 in invasiveness control[J]. Nature, 20 11, 470(7334): 409-13.
    [11] Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1& alpha;[J]. Nat Chem Biol, 2010, 6(11): 829-36.
    [12] Barco R, Garcia CB, Eid JE. The synovial sarcoma-associated SYT-SSX2 oncogene antagonizes the polycomb complex protein Bmi1[J]. PLoS One, 2009, 4(4): e5060.
    [13] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation[J]. Nature, 2001, 411(6841): 10 17-21.
    [14] Recchia AG, Musti AM, Lanzino M, et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells[J]. Int J Biochem Cell Biol, 2009, 41(3): 603-14.
    [15] Bockstaele L, Coulonval K, Kooken H, et al. Regulation of CDK4[J]. Cell Div, 2006, 1: 25.
    [16] Lobenhofer EK, Huper G, Iglehart JD, et al. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis[J]. Cell Growth Differ, 2000, 11(2): 99-110.
    [17] Squires MS, Nixon PM, Cook SJ. Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/ 2 but not ERK5/BMK1[J]. Biochem J, 2002, 366(Pt 2): 673-80.
    [18] Motti ML, De Marco C, Califano D, et al. Loss of p27 expression through RAS->BRAF->MAP kinase-dependent pathway in human thyroid carcinomas[J]. Cell Cycle, 2007, 6(22): 2817-25.
    [19] Amary MF, Berisha F, Bernardi Fdel C, et al. Detection of SS18- SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma[J]. Mod Pathol, 2007, 20(4): 482-96.
    [20] Kawaguchi S, Tsukahara T, Ida K, et al. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group[J]. Cancer Sci, 20 12, 103(9): 1625-30.
    [21] Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFbeta in cancer[J]. FEBS Lett, 2012, 586(14): 1959-70.
    [22] Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes[J]. Cell Cycle, 2010, 9( 12): 2363-74.
    [23] Qi Y, Wang CC, He YL, et al. The correlation between morphology and the expression of TGF-β signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas[J]. Int J Clin Exp Pathol, 2013, 6(12): 2787-99.
    [24] Hajra KM, Chen DY, Fearon ER. The SLUG zincfinger protein represses E-cadherin in breast cancer[J]. Cancer Res, 2002, 62(6): 16 13-8.
    [25] Saito T, Nagai M, Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma[J]. Cancer Res, 2006, 66(14): 6919-27.
    [26] Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 87 1-90.
    [27] Su b r ama n i am MM, Na v a r r o S, Ll omb a r t -Bo s c h A. Immunohistochemical study of correlation between histologic subtype and expression of epithelial-mesenchymal transitionrelated proteins in synovial sarcomas[J]. Arch Pathol Lab Med, 20 11, 135(8): 1001-9.
    [28] Shin NR, Jeong EH, Choi CI, et al. Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer[J]. BMC Cancer, 2012, 12: 521.
    [29] Ahmad A, Sarkar SH, Bitar B, et al. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells[J]. Mol Cancer Ther, 2012, 11 (10): 2193-201.
    [30] Javelaud D, Pierrat MJ, Mauviel A. Crosstalk between TGF-β and hedgehog signaling in cancer[J]. FEBS Lett, 2012, 586(14): 20 16-25.
    [31] Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest, 2009, 119(6): 1429-37.
    [32] Lee KW, Lee NK, Ham S, et al. Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma[J]. Cancer Lett, 2014, 343(1): 62-73.
计量
  • 文章访问数:  1799
  • HTML全文浏览量:  274
  • PDF下载量:  1171
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-20
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-07-24

目录

/

返回文章
返回
x 关闭 永久关闭