高级搜索

出核因子CRM1抑制剂KPT-185对人前列腺癌细胞生长的影响

高剑坤, 龙波, 曾彬, 唐旭

高剑坤, 龙波, 曾彬, 唐旭. 出核因子CRM1抑制剂KPT-185对人前列腺癌细胞生长的影响[J]. 肿瘤防治研究, 2015, 42(07): 676-680. DOI: 10.3971/j.issn.1000-8578.2015.07.008
引用本文: 高剑坤, 龙波, 曾彬, 唐旭. 出核因子CRM1抑制剂KPT-185对人前列腺癌细胞生长的影响[J]. 肿瘤防治研究, 2015, 42(07): 676-680. DOI: 10.3971/j.issn.1000-8578.2015.07.008
GAO Jiankun, LONG Bo, ZENG Bin, TANG Xu. Effect of CRM1 Inhibitor KPT-185 on Growth of Human Prostate Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 676-680. DOI: 10.3971/j.issn.1000-8578.2015.07.008
Citation: GAO Jiankun, LONG Bo, ZENG Bin, TANG Xu. Effect of CRM1 Inhibitor KPT-185 on Growth of Human Prostate Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 676-680. DOI: 10.3971/j.issn.1000-8578.2015.07.008

出核因子CRM1抑制剂KPT-185对人前列腺癌细胞生长的影响

详细信息
    作者简介:

    高剑坤(1971-),女,博士,副研究员,主要从事肿瘤生物学研究

  • 中图分类号: R73-3; R737.25

Effect of CRM1 Inhibitor KPT-185 on Growth of Human Prostate Cancer Cells

  • 摘要: 目的 探讨出核因子(chromosome maintenance region 1, CRM1)抑制剂KPT-185对人前列腺癌细胞生长、凋亡、迁徙的影响及影响产生的原因。方法 采用MTT、细胞集落形成能力测定法检测KPT-185对前列腺癌细胞生长的影响;划痕愈合实验检测KPT-185对前列腺癌细胞迁徙能力的影响;流式细胞仪检测KPT-185对细胞周期的影响;人组蛋白(Histone)/DNA 酶联免疫法和膜联蛋白V-FITC/PI双染法流式细胞术检测细胞凋亡;免疫印迹检测蛋白表达。结果 KPT-185能极大地抑制人前列腺癌细胞的生长,使其细胞周期阻滞于G0~G1期,并导致细胞凋亡。KPT-185引起的细胞生长抑制和凋亡是通过其抑制CRM1的核输出,使抑癌蛋白p53 和p21保留于核内而发挥作用的。结论 KPT-185是一种新型的CRM1抑制剂,有望成为治疗前列腺癌的候选药物。

     

    Abstract: Objective To investigate the effect of chromosome maintenance region 1(CRM1) inhibitor KPT-185 on the growth, migration and apoptosis of prostate cancer cells and related reasons. Methods MTT assay, Clonogenic assay, Wound healing assay, flow cytometry analysis, Histone/DNA ELISA, Annexin V-FITC method and Western blot were used to detect KPT-185 effect on cell growth, migration, cell cycle, apoptosis, protein expression in prostate cancer cells and the potential mechanism, respectively. Results KPT-185 induction of cell apoptosis, growth inhibition and cell cycle arrest was involved in CRM1 inhibition and nuclear retention of tumor suppressor proteins p53 and p21 in prostate cancer cells. Conclusion KPT-185 as a new CRM1 inhibitor could be a potential drug in the treatment for prostate cancer.

     

  • [1] Fox AM, Ciziene D, McLaughlin SH, et al. Electrostatic interactions involving the extreme C terminus of nuclear export factor CRM1 modulate its affinity for cargo[J]. J Biol Chem, 2011, 286(33): 29 325-35.
    [2] Fornerod M, Ohno M, Yoshida M, et al. CRM1 is an export receptor for leucine-rich nuclear export signals[J]. Cell, 1997, 90 (6): 1051-60.
    [3] Kutay U, Izaurralde E, Bischoff FR, et al. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex[J]. EMBO J, 1997, 16 (6): 1153-63.
    [4] Stade K, Ford CS, Guthie C, et al. Exportin 1 (Crm1p) is an essential nuclear export factor[J]. Cell, 1997, 90(6): 1041-50.
    [5] Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation[J]. Nat Rev Mol Cell Biol, 2010, 11(7): 490-501.
    [6] Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond[J]. Trends Cell Biol, 2007, 17(4): 193-201.
    [7] Sakakibara K, Saito N, Sato T, et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity[J]. Blood, 20 11, 118(14): 3922-31.
    [8] Turner JG, Sullivan DM. CRM1-mediated nuclear export of proteins and drug resistance in cancer[J]. Curr Med Chem, 2008, 15 (26): 2648-55.
    [9] Gao J, Azmi AS, Aboukameel A, et al. Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer[J]. Oncotarget, 2014, 5(11): 34 44-54.
    [10] Levine AJ. p53, the cellular gatekeeper for growth and division[J]. Cell, 1997, 88(3): 323-31.
    [11] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network[J]. Nature, 2000, 408(6810): 307-10.
    [12] Vousden KH, Lu X. Live or let die: the cell's response to p53 [J]. Nat Rev Cancer, 2002, 2(8): 594-604.
    [13] Fridman JS, Lowe SW. Control of apoptosis by p53[J]. Oncogene, 20 03, 22(56): 9030-40.
    [14] Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions[J]. Free Radic Biol Med, 2012, 52 (1): 7-18.
    [15] Dotto GP. p21 (WAF1/Cip1): more than a break to the cell cycle? [J] Biochim Biophys Acta, 2000, 1471(1): M43-56.
    [16] Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis[J]. Mol Cancer Ther, 2002, 1(8): 63 9-49.
    [17] Li R, Waga S, Hannon GJ, et al. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair[J]. Nature, 1994, 371(6497): 534-7.
    [18] Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases[J]. Cell, 1993, 75(4): 805-16.
    [19] Xiong Y, Hannon GJ, Zhang H, et al. p21 is a universal inhibitor of cyclin kinases[J]. Nature, 1993, 366(6456): 701-4.
    [20] el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression[J]. Cell, 1993, 75(4): 817-25.
    [21] Liu R, Wang L, Chen G, et al. FOXP3 up-regulates p21 expression by sitespecific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus[J]. Cancer Res, 2009, 69(6): 22 52-9.
    [22] Roger L, Gadea G, Roux P. Control of cell migration: a tumour suppressor function for p53?[J]. Biol Cell, 2006, 98(3): 141-52.
计量
  • 文章访问数:  1463
  • HTML全文浏览量:  315
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-20
  • 修回日期:  2014-09-05
  • 刊出日期:  2015-07-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭