高级搜索

肺癌细胞中miR-182的功能及作用机制

丁海兵, 柯宏刚, 游继军, 袁锦华, 王 熠

丁海兵, 柯宏刚, 游继军, 袁锦华, 王 熠. 肺癌细胞中miR-182的功能及作用机制[J]. 肿瘤防治研究, 2014, 41(02): 142-147. DOI: 10.3971/j.issn.1000-8578.2014.02.012
引用本文: 丁海兵, 柯宏刚, 游继军, 袁锦华, 王 熠. 肺癌细胞中miR-182的功能及作用机制[J]. 肿瘤防治研究, 2014, 41(02): 142-147. DOI: 10.3971/j.issn.1000-8578.2014.02.012
DING Haibing, KE Honggang, YOU Jijun, YUAN Jinhua, WANG Yi. Functions of miR-182 in Lung Cancer Cell and Its Mechanism of Action[J]. Cancer Research on Prevention and Treatment, 2014, 41(02): 142-147. DOI: 10.3971/j.issn.1000-8578.2014.02.012
Citation: DING Haibing, KE Honggang, YOU Jijun, YUAN Jinhua, WANG Yi. Functions of miR-182 in Lung Cancer Cell and Its Mechanism of Action[J]. Cancer Research on Prevention and Treatment, 2014, 41(02): 142-147. DOI: 10.3971/j.issn.1000-8578.2014.02.012

肺癌细胞中miR-182的功能及作用机制

详细信息
    作者简介:

    丁海兵(1978-),男,硕士,主治医师,主要从事肺癌外科及基因治疗的研究

  • 中图分类号: R734.1

Functions of miR-182 in Lung Cancer Cell and Its Mechanism of Action

  • 摘要: 目的 检测miR-182在肺癌细胞中的表达和对肺癌细胞生物学特性的影响,并观察miR-182 对靶基因profilin1(PFN1)表达的影响。方法 qRT-PCR检测miR-182在肺癌细胞中的表达。MTT和流式细胞仪分别检测miR-182对95-D细胞活力、增殖和凋亡的影响。Transwell侵袭小室检测miR-182对95-D细胞侵袭的影响。荧光素酶报告基因系统验证PFN1基因。Western blot方法检测miR-182对细胞中PFN1蛋白表达的影响。结果 qRT-PCR结果显示:miR-182在肺癌细胞中的表达显著上升(P<0.01)。MTT和流式细胞仪分析结果显示:抑制miR-182表达后,细胞活力和增殖指数明显下降(P<0.05);细胞的凋亡显著增加(P<0.01)。Transwell侵袭小室检测结果显示:抑制miR-182表达后,细胞侵袭能力显著降低(P<0.05)。Western blot结果显示: 抑制miR-182表达后,靶蛋白PFN1的表达显著上升(P<0.05)。结论 miR-182在肺癌细胞中表达上调,并促进95-D细胞增殖和侵袭,并可负性调节PFN1 蛋白的表达。

     

    Abstract: Objective To determine the expression of miR-182 in human lung cancer cell lines, and to evaluate the effects of miR-182 on biological characteristics and targeting profilin1 (PFN1) of the lung cancer cell line. Methods The expression of miR-182 was detected by qRT-PCR in lung cancer cells. The infl uence of miR-182 on the viability, proliferation and apoptosis of 95-D cells was evaluated by MTT and fl ow cytometry assay. The role of miR-182 in the invasive potential of 95-D cells was studied by Transwell chamber assay. A luciferase reporter gene system was used to verify that PFN1 is a target gene for miR-182. The resulting effects of miR-182 on PFN1 protein expression was verified by Western blot analysis. Results By qRT-PCR, the expression of miR-182 was higher in lung cancer cells than that in HBE cells (P<0.01). Following a depression of miR-182 expression, cell viability, proliferation index and invasive potential were decreased (P<0.05), and apoptotic index and PFN1 protein levels were increased (P<0.01); the invasion was signifi cantly decreased (P<0.05). Conclusion The expression of miR-182 is upregulated in lung cancer cells. miR-182 negatively regulates PFN1 protein expression and promotes the proliferation and invasion of lung cancer cells.

     

  • [1] Gower AC, Steiling K, Brothers JF 2nd, et al. Transcriptomic studies of the airway field of injury associated with smokingrelated lung disease[J]. Proc Am Thorac Soc, 2011, 8(2): 173-9.
    [2] Au WW, Su D, Yuan J. Cigarette smoking in China: public health, science, and policy[J]. Rev Environ Health, 2012, 27(1): 43-9.
    [3] Wu X, Chen H, Wang X. Can lung cancer stem cells be targeted for therapies? [J]. Cancer Treat Rev, 2012, 38(6): 580-8.
    [4] Wang Q, Wang S, Wang H, et al. MicroRNAs: novel biomarkers for lung cancer diagnosis, prediction and treatment[J]. Exp Biol Med (Maywood), 2012, 237(3): 227-35.
    [5] He B, Yin B, Wang B, et al. MicroRNAs in esophageal cancer (Review)[J]. Mol Med Rep, 2012, 6(3): 459-65.
    [6] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13 q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-9.
    [7] Saus E, Soria V, Escaramís G, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia[J]. Hum Mol Genet, 2010, 19 (20): 4017-25.
    [8] Cai Y, Yu X, Hu S, et al. A brief review on the mechanisms of miRNA regulation[J]. Genomics Proteomics Bioinformatics, 20 09, 7(4): 147-54.
    [9] Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia[J]. JAMA, 2011, 30 5(1): 59-67.
    [10] Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis[J]. Cancer Metastasis Rev, 2012, 31 (3-4): 653-62.
    [11] Xu XM, Qian JC, Deng ZL, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer[J]. Oncol Lett, 2012, 4(2): 339-45.
    [12] Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression[J]. Cancer Cell, 2008, 13(6): 49 6-506.
    [13] Xie L, Ushmorov A, Leithäuser F, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma[J]. Blood, 2012, 11 9(15): 3503-11.
    [14] Sun Y, Fang R, Li C, et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro[J]. Biochem Biophys Res Commun, 2010, 396(2): 501-7.
    [15] Guan P, Yin Z, Li X, et al. Meta-analysis of human lung cancer microRNA expression profi ling studies comparing cancer tissues with normal tissues[J]. J Exp Clin Cancer Res, 2012, 31: 54.
    [16] Liu Z, Liu J, Segura MF, et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma[J]. J Pathol, 2012, 228(2): 204-15.
    [17] Alshalalfa M, Bader GD, Goldenberg A, et al. Detecting microRNAs of high influence on protein functional interaction networks: a prostate cancer case study[J]. BMC Syst Biol, 2012, 6: 112.
    [18] Weeraratne SD, Amani V, Teider N, et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma[J]. Acta Neuropathol, 2012, 12 3(4): 539-52.
    [19] Kong WQ, Bai R, Liu T, et al. MicroRNA-182 targets cAMPresponsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma[J]. FEBS J, 2012, 279(7): 12 52-60.
    [20] Poell JB, van Haastert RJ, de Gunst T, et al. A functional screen identifies specific microRNAs capable of inhibiting human melanoma cell viability[J]. PLoS One, 2012, 7(8): e43569.
    [21] Rawe VY, Payne C, Schatten G. Profi lin and actin-related proteins regulate microfilament dynamics during early mammalian embryogenesis[J]. Hum Reprod, 2006, 21(5): 1143-53.
    [22] Sagot I, Rodal AA, Moseley J, et al. An actin nucleation mechanism mediated by Bni1 and profi lin[J]. Nat Cell Biol, 2002, 4( 8): 626-31.
    [23] Zou L, Ding Z, Roy P. Profilin-1 overexpression inhibits proliferation of MDA-MB-231 breast cancer cells partly through p27kip1 upregulation[J]. J Cell Physiol, 2010, 223(3): 623 -9.
计量
  • 文章访问数:  1415
  • HTML全文浏览量:  353
  • PDF下载量:  951
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-04
  • 修回日期:  2013-05-07
  • 刊出日期:  2014-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭