文章信息
- 盖晓惠,薛晓英.
- GE Xiaohui, XUE Xiaoying.
- 高级别脑胶质瘤放疗剂量分割研究现状及进展
- Review on Radiation Dose Fractionation on High-grade Glioma Patients
- 肿瘤防治研究, 2016, 43(03): 234-237
- Cancer Research on Prevention and Treatment, 2016, 43(03): 234-237
- http://www.zlfzyj.com/CN/abstract/abstract8719.shtml
-
文章历史
- 收稿日期: 2015-03-31
- 修回日期: 2015-06-23
脑胶质瘤是颅内最常见肿瘤,占原发脑肿瘤的45%~60%,其中超过3/4为高级别脑胶质瘤(Ⅲ、Ⅳ级),且近25年来其发病率以每年1.2%的速度逐年上升[1]。手术加术后放疗是目前高级别脑胶质瘤标准治疗方案,术后放疗可进一步杀灭残存肿瘤细胞,减少复发,延长生存期,但多年来术后放疗的疗效仍维持在较低水平,中位生存期6~9月,5年生存率仅3.9%[2]。胶质瘤具有原位复发的特点,且90%发生在距原发灶2 cm的范围之内,故优化局部放疗方案是治疗的焦点。
1 常规分割放疗常规分割即每日1次,每次1.8~2.0 Gy,每周5天的照射方法,脑胶质瘤目前临床标准的放疗方案为60 Gy/30次,但其局部复发率仍较高。而精确放疗的发展使常规分割放疗的生存稍有改善,Narayana等[3]报道58例高度恶性脑胶质瘤采用调强放疗,间变性星形细胞瘤和胶质母细胞瘤中位生存时间分别为36和9月,中位无进展生存率分别为5.6和2.5月。
在单次分割剂量不变的情况下,有较多的研究探讨了总剂量与疗效的关系,试图在单次分割剂量不变通过提高总剂量的方法而提高疗效。Tanaka等[4]采用常规分割放疗治疗恶性脑胶质瘤,分为3组,总剂量分别是60、80和90 Gy,结果高剂量组(80和90 Gy)总生存优于常规剂量组,但长期观察脑白质病的发病率也明显高于常规剂量组。RTOG0023研究[5]采用三维适形放疗,共入组了76例脑胶质瘤术后患者,总剂量70或78 Gy,中位生存期12.5月,与历史资料对照无明显优势,但分层分析显示,肉眼全切的患者有明显的生存获益,中位生存期为16.6月。基于此项研究,RTOG9803研究[6]进一步提高了总照射剂量,共入组209例恶性脑胶质瘤术后患者,根据靶区大小分为2组(PTV<75cc组和PTV≥75cc组),每组再分为66、72、78、84 Gy四个剂量梯度,结果仅PTV<75cc组接受84 Gy照射的患者中位生存期优于66 Gy组,余均未见生存获益,各组均无3级以上不可逆神经毒性发生。
以上研究显示,随着总剂量的增加虽然不良反应未见明显增加,但并没给患者带来明显的生存获益,而仅靶区范围较小及肉眼全切的患者可能会受益。但Stieber等[7]分析了部分文献认为在恶性胶质瘤治疗中适当提高放疗剂量已经显示出生存获益。
2 改变分割方式的放疗临床常用提高肿瘤放疗效果的方法有两种,一为常规分割提高总剂量,一为改变放疗分割方式提高生物剂量。在恶性脑胶质瘤术后放疗中,总剂量提高未显示出明显生存优势,而提高放疗生物剂量是提高恶性脑胶质瘤疗效的潜在途径,改变放疗分割方式可能对恶性脑胶质瘤放疗疗效产生影响。近年来多数学者热衷于放疗加化疗及靶向药物治疗,而对脑恶性胶质瘤的生物学特性关注较少,这就需要从脑胶质瘤细胞增殖动力学着手,探索不同分割模式的获益可能。Hasegawa等[8]对人脑胶质瘤裸小鼠移植瘤模型采用不同分割剂量放疗观察其生物效应,结果发现大分割对脑胶质瘤疗效较好。许新等[9]对人脑胶质母细胞瘤裸小鼠亚临床肿瘤放疗研究发现,常规分割模式对控制恶性脑胶质瘤亚临床灶肿瘤尚不是一个优化方案,超分割160 cGy 2次/天、10次/周和300 cGy 5次/周是相对优化方案,这为临床改进和提高恶性脑胶质瘤术后放疗提供了实验室研究依据。临床上多年来已尝试开展了多项关于恶性胶质瘤不同分割方式的研究[10, 11],包括超分割放疗、加速超分割放疗和大分割放疗等。
2.1 超分割及加速超分割放疗超分割放疗即减少每次照射剂量,每日两次或两次以上的照射方式,加速超分割放疗伴有总治疗时间的缩短。超分割放疗由于每分次剂量减少,在不增加晚反应组织损伤的基础上使肿瘤剂量提高,另外加速超分割放疗缩短了总治疗时间、克服了肿瘤细胞加速再增殖,从而可能提高局部控制率。但目前大部分临床研究均未证实在恶性脑胶质瘤方面加速超分割疗效优于常规分割。Prados等[12]采用每次1.6 Gy、每天2次、总量70.4 Gy的分割方式治疗恶性脑胶质瘤,与常规照射组比较,中位生存期分别为37和40周,无进展生存期分别为16和19周。Levin等[13]对90例恶性胶质瘤患者进行治疗,每天照射3次,每次1.9~2.0 Gy,每周治疗5天,2周完成,治疗当天使用卡铂增敏,结果长期生存率与常规放疗加化疗相当。
2.2 大分割放疗大分割放疗又称为低分割放疗,单次分割剂量大(≥2.5 Gy/次),每天1次,总治疗时间缩短。单次分割剂量的增大,可能加大晚反应组织副反应,因此一般仅用于乏氧或对放疗抗拒的肿瘤。近年来的研究表明脑胶质瘤α/β在1~3 Gy之间,临床大量资料显示对放疗不敏感,所以从理论上推测,适合采用大分割放疗方案。
Hulshof等[14]把155例恶性胶质瘤患者分为3组,分别给予常规放疗和两组大分割放疗,剂量分割每次5 Gy、共40 Gy/17 d和每次7 Gy、共28 Gy/(7~11)d,但观察发现3组间中位生存期差异无统计学意义。Sultanem等[15]对25例术后多形性胶质母细胞瘤行前瞻性研究,放疗剂量为60 Gy/20次,每天1次,结果观察到中位生存期仅为9.5月,1年生存率40%。而McAleese等[16]将恶性胶质瘤病例184例,分别行常规照射60 Gy及剂量分割放疗每周3次,每次5 Gy,共30 Gy/2周,观察到的结果却是大分割照射无益处,中位生存期分别为8和5月,1年生存率分别为19%和12%。国内刘云琴等[17]对11例WHO Ⅲ级患者进行大分割放疗,处方量2.5 Gy/次、共60 Gy/24次,与常规放疗比较,生存率稍高,但无明显差异。黎世秋等[18]在常规放疗后期采用适形加量大分割照射,在40 Gy/20次常规放疗后,用适形局部推量,4 Gy/次、3次/周、共7~8次,观察到1、2年生存率高于常规放疗组,但远期疗效与常规组相比未见提高。以上数据显示既往大多数对大分割和常规分割放疗进行比较研究,未发现明显生存获益。
Roa等[19]对100例年龄>60岁的恶性胶质瘤患者进行随机分组,51例行常规照射60 Gy,49例行大剂量低分割照射15次,共40 Gy/3周,中位生存期分别为5.1和5.6月,虽然差异无统计学意义,但大分割组中需用类固醇药物明显减少。Nieder等[20]分析了21篇关于调整分割剂量的文献,研究得出的结论依然是非常规分割放疗方式并不能改善生存,但可以缩短总治疗时间,而对于预后较差及老年恶性脑胶质瘤患者,大分割放疗是一个可供选择的治疗方案,可能会有生存获益,而对于预计生存期较长患者,常规分割放疗的获益可能更大[21, 22, 23]。但近期Yazici等[24]对36例复发高级别脑胶质瘤采用CyberKnife进行大分割放射治疗,中位剂量30 Gy,结果观察到放疗结束后中位生存期10.6月,放疗后序贯化疗中位生存期为16.8月,术后总中位生存期35.5月,放疗后中位无进展生存期为7.9月,研究不仅未观察到明显不良反应,且显示出明显生存获益,考虑其获益于现代先进的放疗技术,但采用CyberKnife治疗脑胶质瘤文献不多,需进一步扩大样本并进行多中心研究。
2.3 同期局部推量调强放疗调强放疗技术(IMRT)的出现被称为放射肿瘤学史上的一次变革,调强放疗是一种特殊的三维放疗技术,与三维适形放射治疗相比,靶区适形性更好,其剂量学优势可能会给临床带来一定的受益,改善预后[25, 26, 27],而调强放疗最大的优势是其调强同步整合加量技术,可进行同期推量分割照射,从而提高放疗生物效应,近年来也被应用于恶性脑胶质瘤的治疗。国内李健等[28]将IMRT同期推量技术用于26例恶性脑胶质瘤术后患者,处方剂量为GTV60 Gy/25次、CTV50 Gy/25次、PTV45 Gy/25次,研究发现在提高肿瘤剂量的同时,危及器官得到了更好的保护,1、2年生存率为61.5%和15.4%,1、2年无疾病进展生存率为15.3%和8.1%(此项研究未采用大分割)。Cho等[29]对40例脑胶质瘤术后患者应用IMRT同期推量分割照射技术,处方剂量GTV 60 Gy/25次、CTV 50 Gy/25次,在不增加不良反应同时,观察到较好的疗效。而来自维克森林大学的一项研究[30],对21例恶性胶质瘤进行调强放疗,GTV为80 Gy,获得了13.6月的中位生存期,而与同等预后因素的患者相比却未显示出明显的生存优势,治疗失败仍以局部复发为主。
2.4 调强同期局部推量大分割放疗恶性脑胶质瘤对放疗抗拒,理论上适合采用大分割放疗,但既往采用常规技术大分割放疗未见明确生存获益,原因不除外与常规放疗技术对周围组织损伤大有关。随着精确放疗时代的到来,特别是调强同步整合加量技术在临床中应用,可在不增加正常组织受量情况下提高肿瘤区受量而提高放疗等效生物剂量。Iuchi等[31]对25例恶性胶质瘤患者采用调强同期推量单纯放疗,单次分割剂量1.8 Gy,同时给予野中野同期推量每次2.5 Gy,总剂量最大达到了68 Gy,结果显示1、2年生存率分别为71.4%和53.6%,明显高于同期对比传统外照射的生存率。Jastaniyah[32]对25例高级别脑胶质瘤进行Ⅰ期临床研究,放疗分别采用54.4 Gy/20次和60 Gy/22次分割方案同步替莫唑胺进行治疗,结果观察到中位生存期15.67月、中位无进展生存期6.7月。Ciammella等[33]对67例高级别脑胶质瘤患者行调强放射治疗,放疗剂量25 Gy/5次,中位生存期和中位无进展生存期分别为13.4和7.9月,未观察到明显不良反应发生。其他研究[34, 35, 36]也认为大于60 Gy的大分割放疗可提高局部控制率延长生存,且未观察到明显不良反应。而最著名的调强同步整合加量技术大分割联合替莫唑胺治疗高分级脑胶质瘤的Ⅰ期[37]和Ⅱ期临床研究[38],将术腔及残存肿瘤单次剂量提高到了6 Gy/次,放疗次数减少为10次,疗程缩短到了2周,观察到中位生存期为16.6月,而治疗不良反应未见增加。随后Reddy等[39]采用同样方案对高级别脑胶质瘤患者进行研究,获得了33月总中位生存期,同时发现失败患者以颅内转移为主,颅内转移多于局部复发。Iuchi等[40]后又对46例高级别脑胶质瘤进行调强同期推量大分割放疗,术区给予68 Gy/8次,中位生存时间20月,其中20例出现放射性坏死,但坏死不仅发生于高剂量区,在低剂量区同样发生,研究还显示放射性坏死与生存期相关,发生放射性坏死者生存期更长,高剂量放疗改变了复发模式,从局部复发到颅内播散。
综上所述,恶性脑胶质瘤患者术后放疗可延长生存,目前标准放疗方案仍是常规分割60 Gy/30次。采用既往放疗技术提高放疗总剂量未能显示出明显的生存获益,而调强同期推量大分割放疗技术在保护周围正常组织同时进一步提高肿瘤剂量,已显示出明显生存优势,甚至正在改变恶性脑胶质瘤患者的复发模式,同时可缩短治疗时间,降低治疗费用,值得临床进一步推广。
[1] | Wen PY, Kesari S. Malignant Gliomas in Adults[J]. N Engl J Med, 2008, 359(5): 492-507. |
[2] | Scoccianti S, Magrini SM, Ricardi U, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the Central Nervous System Study Group of Airo (Italian Association of Radiation Oncology)[J]. Neurosurgery, 2010, 67(2): 446-58. |
[3] | Narayana A, Yamada J, Berry S, et al. Intensity-modulated radiotherapy in high-grade glioma: clinical and dosimetric results[J]. Int J Radiat Oncol Biol Phys, 2006, 64(3): 892-7. |
[4] | Tanaka M, Ino Y, Nakagawa K, et al. High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison[J]. Lancet Oncol, 2005, 6(12): 953-60. |
[5] | Cardinale R, Won M, Choucair A, et al. A phaseⅡtrial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme RTOG0023[J]. Int J Radiat Oncol Biol Phys, 2006, 65(5): 1422-8. |
[6] | Tsien C, Moughan J, Michalski JM, et al. PhaseⅠthree-dimensional conformal radiation dose escalation study in newly diagnosed glioblastoma: Radiation Therapy Oncology Group Trial 98-03[J]. Int J Radiat Oncol Biol Phys, 2009, 73(3): 699-708. |
[7] | Stieber VW, Mehta MP. Advances in radiation therapy for brain tumors[J]. Neurol Clin, 2007, 25(4): 1005-33. |
[8] | Hasegawa M, Niibe H, Mitsuhashi N, et al. Hyperfraetionated and hvpofraetionated radiation therapy for human malignant dioma xenograft in nude mice[J]. Jpn J Cancer Res, 1995, 86(9): 879-84. |
[9] | Xu X, Yang WZ, Gao L, et al. Optimizing the schedules of fractionated irradiation in subclinical tumors of malignant glioma[J]. Zhonghua Fang She Zhong Liu Xue Za Zhi, 2012, 21(6): 563-6. [许新, 杨伟志, 高黎, 等. 恶性脑胶质瘤亚临床肿瘤分割照射方案优化的实验研究[J]. 中华放射肿瘤学杂志, 2012, 21(6): 563-6.] |
[10] | Laperriere N, Zuraw L, Cairncross G, et al. Radiotherapy for newly diagnosed malignant gliomas in adults: a systematic rewiew[J]. Radiother Oncol, 2002, 64(3) :259-73. |
[11] | Bucgner JC, Ballman KV, Burton GV, et al. Phase Ⅲ trial of carmustine and cisplatin compared with carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group9503 Trials[J]. J Clin Oncol, 2006, 24 (24): 3871-9. |
[12] | Prados MD, Wara WM, Sneed PK, et al. PhaseⅢtrial of accelerated hyperfractionation with or without difluromethylomithine(DFMO) versus standard fractionated radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme[J]. Int J Radiat Oncol Biol Phys, 2001, 49(1): 71-7. |
[13] | Levin VA, Yung WK, Bruner J, et al. PhaseⅡ study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas[J]. Int J Radiat Oncol Biol Phys, 2002, 53(1): 58-66. |
[14] | Hulshof MC, Schimmel EC, Andries Bosch D, et al. Hypofractionation in glioblastoma multiforme[J]. Radiother Oncol, 2000, 54(2) :143-8. |
[15] | Sultanem K, Patrocinio H, Lambert C, et al. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial[J]. Int J Radiat Oncol Biol Phys, 2004, 58(1): 247-52. |
[16] | McAleese JJ, Stenning SP, Ashley S, et al. Hypofractionationated radiotherapy for poor prognosis malignant gliomas: mathed pair survival analysis with MRC controls[J]. Radiother Oncol, 2003, 67(2): 177-82. |
[17] | Liu YQ, Qian LT, Zhang HY, et al. Effect of Intensity-modulated Radiotherapy with Different Dose Fractionations on 58 Astrocytic Tumors[J]. Zhongguo Zhong Liu Lin Chuang, 2010, 37(7): 395-8. [刘云琴, 钱立庭, 张红雁, 等. 58例胶质瘤不同分割剂量调强放疗疗效观察[J]. 中国肿瘤临床, 2010, 37(7): 395-8.] |
[18] | Li SQ, Jiang XD, Wang QS, et al. The observation of different curative effect on conformal radiotherapy after conventional radiotherapy of malignant glioma[J]. Shandong Yi Yao, 2011, 51(41): 37-8. [黎世秋, 蒋晓东, 王全善, 等. 恶性脑胶质瘤常规放疗后适形放疗不同推量模式疗效观察[J]. 山东医药, 2011, 51(41): 37-8.] |
[19] | Roa W, Brasher PM, Banman G, et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial[J]. J Clin Oncol, 2004, 22(9): 1583-8. |
[20] | Nieder C, Andratschke N, Wiedenmann N, et al. Radiotherapy for high grade gliomas. Does altered fractionation improve ethe outcome? [J]. Strahlenther Onkol, 2004, 180(7): 401-7. |
[21] | Minniti G, De Sanctis V, Muni R, et al. Hypofractionated radiotherapy followed by adjuvant chemotherapy with temozolomide in elderly patients with glioblastoma[J]. J Neurosurg, 2009, 91(1): 95-100. |
[22] | Muni R, Minniti G, Lanzetta G, et al. Short-term radiotherapy followed by adjuvant chemotherapy in poor-prognosis patients with glioblastoma[J]. Tumori, 2010, 96(1): 60-4. |
[23] | Panet-Raymond V, Souhami L, Roberge D, et al. Accelerated Hypofractionate intensity modulated radiotherapy with concurrent and adjuvant emozolomide for patients with glioblastoma multiforme:a safety and efficacy analysis[J]. Int J Radiat Oncol Biol Phys, 2009, 73(2): 473-8. |
[24] | Yazici G,Cengiz M,Ozyigit G, et al. Hypofractionated stereotactic reirradiation for recurrentglioblastoma[J]. J Neurooncol, 2014, 20(1): 117-23. |
[25] | De La Fuente Herman T, Ahmad And S, Vlachaki MT. Intensity modulated radiation therapy versus three dimensional conformal radiation therapy for treatment of high grade glioma: a radiobiological modeling study[J]. J Xray Sci Technol, 2010, 18(4): 393-402. |
[26] | Amelio D, Lorentini S, Schwarz M, et al. Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues[J]. Radiother Oncol, 2010, 97(3): 361-9. |
[27] | MacDonald SM, Ahmad S, Kachris S, et al. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison[J]. J Appl Clin Med Phys, 2007, 8(2): 47-60. |
[28] | Li J, Zhang XP, He HT, et al. Glioma of intensity modulated radiation therapy (imrt) during the same period on 26 patients experience[J]. Zhongguo Shen Jing Zhong Liu Za Zhi, 2010, 8(2): 113-6. [李健, 张秀萍, 何海涛, 等. 胶质瘤的同期推量调强放射治疗26例经验[J]. 中国神经肿瘤杂志, 2010, 8(2): 113-6.] |
[29] | Cho KH, Kim JY, Lee SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas[J]. Int J Radiat Oncol Biol Phys, 2010, 78(2): 390-7. |
[30] | Moniazeb AM, Ayala D, Jensen C, et al. A phaseⅠdose escalation study of hypofractionated IMRT field-in-field boost for newly diagnosed glioblastoma multiforme[J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): 743-8. |
[31] | Iuchi T, Hatano K, Narit Y, et al. Hypofractionated high-dose irradiation for the treatment of malignant a strocytomas using simultaneous integrated boost technique by IMRT[J]. Int J Radiat Oncolo Biol Phys, 2006, 64(5): 1317-24. |
[32] | Jastaniyah N,Murtha A,Pervez N, et al. PhaseⅠstudy of hypofractionated intensity modulated radiation therapy with concurrent and adjuvant temozolomidein patients withglioblastoma multiforme[J]. Radiat Oncol,2013, 8: 38. |
[33] | Ciammella P,Galeandro M,D’Abbiero N, et al. Hypo-fractionated IMRT for patients with newly diagnosedglioblastoma multiforme: a 6 year single institutional experience[J]. Clin Neurol Neurosurg,2013, 115(9): 1609-14. |
[34] | Lim YJ,Kim IH,Han TJ, et al. Hypofractionated chemoradiotherapy with temozolomide as a treatment option forglioblastomapatients with poor prognostic features[J]. Int J Clin Oncol,2015, 20(1): 21-8. |
[35] | Pashaki AS,Hamed EA,Mohamadian K, et al. Efficacy of high dose radiotherapyin post-operative treatment of glioblastoma multiform--a single institution report[J]. Asian Pac J Cancer Prev,2014, 15(6): 2793-6. |
[36] | Massaccesi M,Ferro M,Cilla S, et al. Accelerated intensity modulatedradiotherapyplustemozolomidein patients withglioblastoma: a phaseⅠdose-escalation study (ISIDE-BT-1)[J]. Int J Clin Oncol,2013, 18(5): 784-91. |
[37] | Chen C, Damek D, Gaspar LE, et al. PhaseⅠtrial of hypofractionated intensity-modulated radiotherapy with temozolomide for patients with newly diagnosed glioblastoma multiforme[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4): 1066-74. |
[38] | Reddy K, Damek D, Gaspar LE, et al. PhaseⅡTrial of Hypofractionated IMRT With Temozolomide for Patients With Newly Diagnosed Glioblastoma Multiforme[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3): 655-60. |
[39] | Reddy K,Gaspar LE,Kavanagh BD, et al. Hypofractionatedintensity-modulated radiotherapywith temozolomide chemotherapy may alter the patterns of failure in patients withglioblastoma multiforme[J]. J Med Imaging Radiat Oncol,2014, 58(6): 714-21. |
[40] | Iuchi T,Hatano K,Kodama T, et al. Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosedglioblastoma[J]. Int J Radiat Oncol Biol Phys,2014, 88(4): 793-800. |