文章信息
- 杨康,李有元,喻俊峰,魏少忠. 2015.
- YANG Kang, LI Youyuan, YU Junfeng, WEI Shaozhong. 2015.
- 肾细胞癌免疫治疗的研究进展
- Updates of Immunotherapy on Renal Cell Carcinoma
- 肿瘤防治研究, 2015, 42(09): 929-932
- Cancer Research on Prevention and Treatment, 2015, 42(09): 929-932
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2015.09.015
-
文章历史
- 收稿日期:2015-03-12
- 修回日期:2015-06-10
2.430079武汉,湖北省肿瘤医院腹泌外科
2.Department of Gastro-intestinal Surgery and Urological Surgery,Hubei Cancer Hospital,Wuhan 430079,China
肾细胞癌约占泌尿系肿瘤44%,20%~30%肾癌患者最终发展为转移性肾细胞癌(metastatic renal cell carcinoma, mRCC),中位总生存期(overall survival, OS)少于2年[1, 2]。1995年IL-2治疗肾细胞癌患者的临床研究开启了肾癌免疫治疗时代[3]。随着对林岛(Von Hippel-Lindau, VHL)基因失活在肾癌发生、发展过程中作用的认识深入,使肾癌治疗逐渐向靶向治疗时代转变[4]。现阶段靶向药物耐药病例的增加及疗效差异性,使我们不得不再次思考肾细胞癌的治疗该如何进行转变,让患者获益最大。
1 细胞因子治疗时代中的免疫治疗 1.1 白细胞介素2(interleukin-2, IL-2)高剂量IL-2早已被FDA列为治疗肾细胞癌的免疫药物,2005年以前具有重要临床意义。它是一种具有抑制肿瘤生长的细胞因子,能够增强细胞毒性T细胞功能及限制肿瘤逃逸。Wolf等[5]利用基因芯片技术对比分析IL-2治疗前后mRCC患者外周血中人类基因ST1的表达量及细胞因子水平,发现对IL-2产生反应的患者体内T细胞及B细胞信号通路上调,调节性T细胞(T regulatory cell, Treg)通路下调。此外,来自255例患者的研究称IL-2治疗产生全面反应率为14%,疾病稳定期达19月[3]。Lam等[6]对40例mRCC酪氨酸抑制剂治疗无效后接受高剂量IL-2治疗的患者进行研究,发现IL-2仍可产生13%反应率,中位OS为22月,然而最常见的不良反应为低血压和血管渗漏综合征。Hanzl等[7]同样发现高剂量IL-2治疗过程中会产生不良反应如高血压(67.4%), 肝肾功能损害(42.4%,63%), 血小板减少(31.5%)。尽管高剂量IL-2临床使用十余年,但在治疗中产生大量的不良反应亟待解决[8]。
1.2 干扰素-α(interferon-α, IFN-α)IFN-α是一型干扰素,主要通过控制细胞凋亡、调节免疫以及增加体内杀伤性T细胞介导细胞毒作用产生抗肿瘤效应。Eto等[9]通过对203例mRCC患者进行IFN-α的前瞻性研究发现其缓解率达13.8%,完全缓解率为4.4%,且首次证明了信号转导和转录激活因子3(STAT3)能够作为进行IFN-α治疗的预测标志物。然而,Negrier等将492例患者分为IFN-α治疗组与观察组,29.2月随访后发现两组OS与PFS差异无统计学意义[10]。最近关于IFN-α与低剂量IL-2联合治疗的3期多中心随机临床试验结果显示RCC术后患者接受长达5年治疗,疾病无复发且药物安全性良好,但将术后患者随机分为实验组(151例)与观察组(152例)进行为期52月随访,发现两组患者的OS相似[12]。考虑单剂量IFN-α治疗产生大量药物不良反应,目前IFN-α多与其他药物联合治疗肾癌细胞[10, 11, 12, 13, 14]。
2 靶向治疗时代中的免疫治疗 2.1 树突状细胞疫苗2005年,Escudier等[15]关于索拉菲尼与安慰剂的Ⅲ期临床研究显示出该药临床疗效明显优于其他肾癌药物,标志着肾癌进入了靶向治疗时代。然而这种靶向药物最大的缺陷在于无法完全使每个mRCC患者产生相同的生存期以及对肿瘤持久的反应率,这使得我们去探索其他疗效稳定的治疗方式[16, 17]。树突状细胞(dendritic cells, DC)是体内最强大的抗原提呈细胞之一,DC疫苗在mRCC患者体内能够激活肿瘤特异性T细胞的增殖,使T细胞能够精准地杀灭肿瘤细胞。Birkhauser等[18]首次通过免疫小鼠模型证明了DC疫苗的独特性、安全性以及有效性。来自906例患者的Meta分析称树突细胞相关疫苗对RCC患者产生12.7%客观反应率,临床受益率为35.3%[19]。此外,Leonhartsberger等[20]对77例(人均年龄58.7岁)接受DC疫苗治疗的mRCC患者进行研究,通过相关数据分析表明个性化DC疫苗治疗能够维持mRCC患者较高的生活质量。
2.2 肿瘤疫苗肿瘤疫苗是利用物理、化学及其他方法使肿瘤细胞灭活仅产生免疫原性,达到治疗肿瘤和预防肿瘤转移及复发。Fl?rcken等[21]将肿瘤裂解物和DC融合成新的疫苗,对7例mRCC患者进行Ⅰ/Ⅱ期临床试验,发现疫苗能够促进T细胞的增殖,且提高对肿瘤细胞的反应率。Walter等在《自然》上发文称晚期mRCC患者体内注射肾癌IMA-901疫苗后,会产生一种针对肾癌细胞的特定抗原,并在研究中证明了IMA-901注射后,再使用单剂量环磷酰胺能够降低20%Treg细胞的数量,增强T细胞对肾癌细胞的免疫能力,现疫苗已进入Ⅲ期临床试验[22, 23]。此外,May等[24]将1 267例RCC患者分为肾癌根治术后接种肿瘤细胞裂解物组与单独行肾癌根治术组,研究发现pT3期患者5年及10年OS分别为71.3%、53.6%高于对照组65.4%、36.2%。
2.3 过继细胞免疫治疗(adoptive cell immunotherapy, ACI)ACI是在体外将免疫效应细胞通过多种细胞因子或其他方法刺激后回输患者体内,增强免疫应答,直接或间接杀灭肿瘤细胞的一种免疫治疗方法。Montagna等[25]证明ACI能够增强进展期RCC患者对肾癌细胞的免疫反应及治疗方法的可行性和安全性。Rosenberg等[26]对96例转移性黑色素瘤患者自身肿瘤浸润的淋巴细胞在体外进行诱导刺激后回输到患者体内,结果显示ACI完全反应率达40%。我国学者将148例mRCC患者随机分为接受ACI组与IL-2结合IFN-α组,研究发现实验组3年PFS与OS分别为12月、46月高于对照组8月、19月[27]。尽管ACI能够改善患者体内抗肿瘤免疫反应,但从患者体内分离的免疫细胞在体外扩增严重受限以及缺乏细胞特异性肿瘤反应等问题,限制了ACI广泛的应用[28]。
3 免疫联合靶向治疗为了使晚期肾癌患者能够获得最大益处,相关免疫学者正着力探索免疫治疗联合当前临床一线靶向药物的方法[29]。来自我国学者的研究称IFN-α能够提高肾癌患者对雷帕霉素抑制剂的敏感度[30]。Rini等[13]对742例未治疗的mRCC患者进行Ⅲ期临床研究,他们随机将患者分为贝伐单抗(Bevacizumab)联合IFN-α治疗组和单独使用IFN-α对照组,研究显示两组OS为18.3月和17.4月。 Escudier等[14]进行大样本Ⅲ期的临床研究,结果同样证明INF-α联合贝伐单抗作为治疗一线mRCC患者能够提高患者的OS(实验组38.6月,对照组为33.6月)。Amin等关于AGS-003和舒尼替尼联合治疗的21例mRCC患者中,OS和PFS分别为30.2月和11.2月,客观缓解率为43%且临床受益患者达81%,现已进入Ⅲ期临床研究阶段[31, 32]。在Procopio等IL-2联合索拉菲尼与单独使用索拉菲尼的对照研究中实验组产生PFS高于对照组(43周vs.31周),随后他们对接受两种不同治疗方式的128例mRCC患者进行随机比较发现实验组OS为26.3%高于对照组OS(23.1%)[33, 34]。此外,转移性膀胱癌靶向免疫治疗的突破性研究为肾癌的治疗提供了新思路,如伊匹单抗(ipilimumab)与PDL-1靶向阻滞剂nivolumab的临床研究中发现两者的结合治疗可以产生至少40%的客观反应率[35, 36, 37]。总之,靶向免疫治疗在临床研究中独特的优越性很可能是肾癌治疗方式下一个转变。
4 小结与展望肾细胞癌免疫治疗对于mRCC患者改善其长期预后已在大量临床试验中得到确认。IL-2以及IFN-α的治疗效果得到肯定,然而在治疗过程中带来相关不良反应让人们对其使用逐渐减少。免疫疫苗的兴起让人们看到了新的治疗希望,尤其是DC疫苗与肿瘤疫苗,大量临床试验正在进行中。ACI的开创曾让人们对于mRCC的治疗也产生了浓厚的兴趣,由于质量控制较难及成本太高而无法得到普及。现阶段人们对RCC患者更提倡一种个性化治疗,针对这种治疗策略采用靶向免疫治疗方式具有巨大前景。随着转移性膀胱癌免疫治疗的突破性进展,我们相信这些困难将能够被克服,并开辟新的免疫治疗途径,造福于肾细胞癌患者。
[1] | Slegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29. |
[2] | Reiter MA, Kurosch M, Haferkamp A. Renal cell carcinoma. Drug therapy and prognostic models[J]. Urologe A, 2015, 54(5): 735-48. |
[3] | Fyfe G, Fisher RI, Rosenberg SA, et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy[J]. J Clin Oncol, 1995, 13(3): 688-96. |
[4] | Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma[J]. J Clin Oncol, 2006, 24(1): 16-24. |
[5] | Wolf B, Schwarzer A, Côté AL, et al. Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, interferon-alpha and dendritic cell vaccine[J]. PLoS One, 2012, 7(12): e50221. |
[6] | Lam ET, WongMK, Agarwal N, et al. Retrospective analysis of the safety and efficacy of high-dose interleukin-2 after prior tyrosine kinase inhibitor therapy in patients with advanced renal cell carcinoma[J]. J Immunother, 2014, 37(7): 360-5. |
[7] | Hanzl YM, Aboumohamed A, Yarlagadda N, et al. High-dose interleukin-2 therapy for metastatic renal cell carcinoma: a contemporary experience[J]. Urology, 2014, 83(5): 1129-34. |
[8] | Muhitch JB, Schwaab T. High-dose IL-2 for metastatic renal cell carcinoma: can the first antitumor immunotherapy be reinvented?[J]. Immunotherapy, 2014, 6(9): 955-8. |
[9] | Eto M, Kamba T, Miyake H, et al. STAT3 polymorphism can predict the response to interferon-alpha therapy in patients with metastatic renal cell carcinoma[J]. Eur Urol, 2013, 63(4): 745-52. |
[10] | Negrier S, Perol D, Ravaud A, et al. Medroxyprogesterone, interferon alfa-2a, interleukin 2, or combination of both cytokines in patients with metastatic renal carcinoma of intermediate prognosis - Results of a randomized controlled trial[J]. Cancer, 2007, 110(11): 2468-77. |
[11] | Messing EM, Manola J, Wilding G, et al. Phase Ⅲ study of interferon alfa-NL as adjuvant treatment for resectable renal cell carcinoma: an Eastern Cooperative Oncology Group/Intergroup trial[J]. J Clin Oncol, 2003, 21(7): 1214-22. |
[12] | Passalacqua R, Caminiti C, Buti S, et al. Adjuvant Low- Dose Interleukin-2 (IL-2) Plus Interferon-alpha (IFN-alpha) in Operable Renal Cell Carcinoma (RCC): A Phase Ⅲ, Randomized, Multicentre Trial of the Italian Oncology Group for Clinical Research (GOIRC)[J]. J Immunother, 2014, 37(9): 440-7. |
[13] | Rini BI, Halabi S, Rosenberg JE, et al. Phase Ⅲ trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206[J]. J Clin Oncol, 2010, 28(13): 2137-43. |
[14] | Escudier B, Bellmunt J, Négrier S, et al. Phase Ⅲ trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival[J]. J Clin Oncol, 2010, 28(13): 2144-50. |
[15] | Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma[J]. N Engl J Med, 2007, 356(2): 125-34. |
[16] | Matsushita H, Kakimi K, Tomita Y, et al. Exploring immune therapy for renal cancer[J]. Int J Urol, 2011, 18(6): 412-21. |
[17] | Godwin JL, Zibelman M, Plimack ER, et al. Immune checkpoint blockade as a novel immunotherapeutic strategy for renal cell carcinoma: a review of clinical trials[J]. Discov Med, 2014, 18(101): 341-50. |
[18] | Birkhauser FD, Koya RC, Neufeld C, et al. Dendritic cellbased immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of Ad-GM.CAIX in immunocompetent mouse models[J]. J Immunother, 2013, 36(2): 102-11. |
[19] | Draube A, Klein-González N, Mattheus S, et al. Dendritic cellbased tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis[J]. PLoS One, 2011, 6(4): e18801. |
[20] | Leonhartsberger N, Ramoner R, Falkensammer C, et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma[J]. Cancer Immunol Immunother, 2012, 61(9): 1407-13. |
[21] | Flörcken A, Kopp J, van Lessen A, et al. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/Ⅱ study[J]. Hum Vaccin Immunother, 2013, 9(6): 1217-27. |
[22] | Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival[J]. Nat Med, 2012, 18(8): 1254-61. |
[23] | Bedke J, Stenzl A. IMA901: a peptide vaccine in renal cell carcinoma[J]. Expert Opin Investiga Drugs, 2013, 22(10): 1329-36. |
[24] | May M, Brookman-May S, Hoschke B, et al. Ten-year survival analysis for renal carcinoma patients treated with an autologous tumour lysate vaccine in an adjuvant setting[J]. Cancer Immunol Immunother, 2010, 59(5): 687-95. |
[25] | Montagna D, Turin I, Schiavo R, et al. Feasibility and safety of adoptive immunotherapy with ex vivo-generated autologous, cytotoxic T lymphocytes in patients with solid tumor[J]. Cytotherapy, 2012, 14(1): 80-90. |
[26] | Rosenberg SA, Yang JC, Sherry RM, et al. Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy[J]. Clin Cancer Res, 2011, 17(13): 4550-7. |
[27] | Liu L, Zhang W, Qi X, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma[J]. Clin Cancer Res, 2012, 18(6): 1751-9. |
[28] | Rosenberg SA. IL-2: the first effective immunotherapy for human cancer[J]. J Immunol, 2014, 192(12): 5451-8. |
[29] | Bedke J, Gouttefangeas C, Singh-Jasuja H, et al. Targeted therapy in renal cell carcinoma: moving from molecular agents to specific immunotherapy[J]. World J Urol, 2014, 32(1): 31-8. |
[30] | Han X, Shang D, Han T, et al. Interferon-alpha enhances the susceptibility of renal cell carcinoma to rapamycin by suppressing mTOR activity[J]. Exp Ther Med, 2014, 8(1): 267-73. |
[31] | Amin A, Dudek A, Logan T, et al. Prolonged survival with personalized immunotherapy (AGS-003) in combination with sunitinib in unfavorable risk metastatic RCC (mRCC)[J]. J Clin Oncol, 2013, 31(6). |
[32] | FIGLIN RA, WOOD C G, GRP AS. ADAPT: An ongoing international phase Ⅲ randomized trial of autologous dendritic cell immunotherapy (AGS-003) plus standard treatment in advanced renal cell carcinoma (RCC)[J]. J Clin Oncol, 2014, 32(4). |
[33] | Procopio G, Verzoni E, Bracarda S, et al. Sorafenib with interleukin- 2 vs sorafenib alone in metastatic renal cell carcinoma: the ROSORC trial[J]. Br J Cancer, 2011, 104(8): 1256-61. |
[34] | Procopio G, Verzoni E, Bracarda S, et al. Overall survival for sorafenib plus interleukin-2 compared with sorafenib alone in metastatic renal cell carcinoma (mRCC): final results of the ROSORC trial[J]. Ann Oncol, 2013, 24(12): 2967-71. |
[35] | Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer[J]. Nature, 2014, 515(7528): 558-62. |
[36] | Hammers H, Plimack ER, Infante JR, et al. Phase I study of nivolumab in combination with ipilimumab (IPI) in metastatic renal cell carcinoma (mRCC)[J]. Bju International, 2014, 114: 8. |
[37] | Harshman LC, Drake CG, Wargo JA, et al. Cancer Immunotherapy Highlights from the 2014 ASCO Meeting[J]. Cancer Immunol Res, 2014, 2(8): 714-9. |