文章信息
- 冯成军,刘晓珂,李晓玉,王永生. 2015.
- FENG Chengjun, LIU Xiaoke, LI Xiaoyu, WANG Yongsheng. 2015.
- 唑来膦酸联合靶向及免疫调节药物的抗肿瘤研究进展
- Progress of Zoledronic Acid Combined with Targeted or Immunomodulatory Drugs in Antitumor Research
- 肿瘤防治研究, 2015, 42(08): 843-847
- Cancer Research on Prevention and Treatment, 2015, 42(08): 843-847
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2015.08.020
-
文章历史
- 收稿日期:2014-08-04
- 修回日期:2015-01-30
唑来膦酸(zoledronic acid,ZA)是第三代含氮双磷酸盐化合物,在临床中广泛用于恶性肿瘤骨转移的治疗。其治疗机制为抑制甲羟戊酸代谢途径中法尼基焦磷酸(FPP)合酶的功能,从而抑制破骨细胞对骨的溶解并诱导破骨细胞凋亡,达到治疗目的[1, 2]。研究证实唑来膦酸对多种肿瘤细胞均有抗肿瘤作用[3, 4, 5],同时,唑来膦酸亦能协同增加化疗、放疗及内分泌治疗的抗肿瘤效果[6, 7, 8]。其作用机制与细胞周期调控、影响肿瘤分子信号通路、调节免疫微环境及抗血管生成等机制有关[9, 10, 11, 12]。靶向及免疫治疗是目前肿瘤研究的热点,在临床中应用越来越广泛。在临床中经常会出现唑来膦酸和靶向或免疫调节药物同时使用的情况,本文综述了唑来膦酸联合靶向及免疫调节药物在抗肿瘤方面的研究进展。
1 唑来膦酸联合靶向药物抗肿瘤1.1 临床研究分子靶向治疗是目前肿瘤研究的热点,并且在临床中应用越来越广泛。在合并骨转移的晚期肿瘤患者中,同时使用靶向药物和唑来膦酸的情况越来越多,其联合用药可能对临床疗效会产生影响。在两项回顾性临床研究中发现,唑来膦酸联合舒尼替尼或索拉菲尼治疗伴骨转移的肾癌,可以提高临床缓解率,并明显延长肿瘤患者的PFS及OS,而且联合双磷酸盐治疗与更好的PFS和OS有关(两者均P < 0.05)[13, 14]。其中Beuselinck等[13]的研究,共纳入76例伴骨转移的晚期肾癌患者,其中49例接受双磷酸盐联合舒尼替尼或索拉菲尼的联合治疗(其中47例为唑来膦酸),27例接受舒尼替尼或索拉菲尼单药靶向治疗,结果显示联合治疗组与单药治疗组的临床客观有效率(RR)38% vs.16%(P=0.028),中位无进展生存时间(mPFS)7.0 vs.4.0月(P=0.0011),中位总生存时间(mOS)17.0 vs.7.0月(P=0.022),同时发现联合双磷酸盐治疗组的下颌骨坏死(ONJ)发生率为10%。而在另一项回顾性临床研究中[14],研究者亦纳入76例伴骨转移的晚期肾癌患者,其中35例接受双磷酸盐联合舒尼替尼治疗(其中29例为唑来膦酸),41例接受单药舒尼替尼靶向治疗,结果显示,联合治疗组与单药治疗组的疾病控制率(CR+PR+SD)分别为86%和71%,疾病进展率(PD)分别为14%和29%(P=0.125),mPFS为15和5月(P < 0.0001),联合治疗组在中位随访45月后未达到mOS,单药治疗组mOS为14月(P=0.029),在35例联合治疗组中,未出现ONJ。此外,最近发表的1例术后出现多发骨转移的伴EGFR敏感突变的老年肺腺癌患者,一线接受吉非替尼治疗后肿瘤进展,然后接受厄洛替尼联合唑来膦酸治疗,治疗12月后全部肿瘤消失[15]。上述临床研究均提示唑来膦酸联合靶向药物可以提高伴骨转移的实体瘤的临床疗效,但也应该注意到,唑来膦酸联合针对VEGF的靶向药物有可能会增加下颌骨坏死(ONJ)的发生[13, 16]。
1.2 基础研究及治疗机制在临床中观察到唑来膦酸可以增加靶向药物的疗效,同时在体外及动物模型中亦有相关研究。两项研究证实唑来膦酸可以增加伊马替尼治疗敏感及耐药的Ph+的慢性髓性白血病(CML)的抗肿瘤效果[17, 18]。其机制与唑来膦酸抑制Ras蛋白的异戊烯化和阻滞肿瘤细胞停留于G0/G1期及S期并诱导S期细胞凋亡有关。而在Melisi等[19]的研究中,则发现唑来膦酸可以增加吉非替尼治疗前列腺癌和乳腺癌的效果,两者联合可以诱导肿瘤细胞凋亡并明显下调血管内皮生长因子(VEGF)蛋白的表达。随后,Chang等[20]在EGFR敏感突变的NSCLC中证实,唑来膦酸可以增加吉非替尼的抗肿瘤作用。研究发现,吉非替尼可以抑制EGFR下游ERK1/2和Akt蛋白磷酸化,从而阻滞肿瘤细胞停留于G1期并诱导凋亡,而唑来膦酸对ERK1/2和Akt蛋白磷酸化无抑制作用,但其可能通过其他作用机制(如下调STAT3蛋白表达和非Ras依赖的通路等),亦可阻滞肿瘤细胞停留于亚G1期并诱导凋亡,当两者联合作用后,其细胞周期阻滞和诱导凋亡作用更明显。此外,另一项研究[21]发现,唑来膦酸联合索拉菲尼治疗原发性肝癌较单药索拉菲尼治疗可以明显抑制肿瘤生长及肿瘤肺转移,其机制可能与唑来膦酸抑制肿瘤相关巨噬细胞(TAM)在肿瘤组织中的浸润及抑制TAM介导的血管生成有关。最近Previdi等[22]研究发现,Tivantinib (一种c-Met酪氨酸激酶抑制剂)联合唑来膦酸能够延缓乳腺癌肿瘤骨转移的发生和延长伴骨转移的乳腺癌的小鼠生存期。研究发现[23],Tivantinib可以延缓乳腺癌骨转移的发生,而唑来膦酸可以抑制破骨细胞活性并诱导凋亡,从而抑制破骨细胞分泌促肿瘤生长因子,因此两者可以发挥协同作用预防和治疗肿瘤骨转移。既往研究[24]证实唑来膦酸可以抑制肿瘤VEGF的表达并抑制肿瘤血管生成,而舒尼替尼和索拉菲尼均可以靶向VEGF治疗,因此,唑来膦酸和舒尼替尼及索拉菲尼可以发挥协同作用,这也解释了上述两项回顾性临床研究中唑来膦酸协同增效的原因。
上述基础研究进一步证实唑来膦酸可以协同增加靶向药物的抗肿瘤作用,其作用机制与细胞周期阻滞、诱导凋亡、影响肿瘤分子信号通路、抗血管生成及影响肿瘤微环境等有关,但我们也应该看到既往的研究几乎均为基础实验研究及临床回顾性研究,目前尚未有关于唑来膦酸联合靶向药物的前瞻性临床试验。所以上述结论需要更多的实验数据,特别是前瞻性的临床试验数据来进一步验证。
2 唑来膦酸联合免疫调节药物抗肿瘤2.1 临床试验机体自身免疫抗肿瘤作用在肿瘤发生发展及治疗中发挥重要的作用,而绝大部分肿瘤患者均存在着免疫功能紊乱。因此,免疫治疗在抗肿瘤治疗中具有重要的地位,目前免疫治疗也是抗肿瘤治疗的热点。研究发现唑来膦酸可以调节免疫反应[10],因此,唑来膦酸联合免疫调节药物可能会对临床结果产生影响。在一项Ⅰ期临床试验中[25]比较了单药唑来膦酸与唑来膦酸联合IL-2治疗18例激素耐药的前列腺癌的临床疗效,试验发现联合治疗组与单药治疗组的临床获益率(CR+PR+SD)分别为66.7%(6/9)和22.2%(2/9),1年生存率联合治疗组亦较单药治疗组明显增加(P < 0.05)。此外,在另一项Ⅰ期临床试验中[26],共有15例化疗耐药或无法接受化疗的晚期NSCLC患者入组,在体外以唑来膦酸联合IL-2扩增γδ T细胞,然后每2周回输一次扩增的γδ T细胞。结果显示在12例可评价患者中有6例稳定(SD),其余6例进展(PD),中位生存时间(MST)589天,中位PFS 126天。但在另一项探索性临床研究中[27]发现了有趣的现象。研究者评价唑来膦酸联合低剂量IL-2治疗晚期难治性肾癌的疗效。在入组12例患者中,7例患者最佳疗效评价SD,1例评价PD,其余4例无法评价。研究发现,在9例接受大于1疗程的患者中,有4例患者在经历多疗程药物治疗后,外周血中γδ T细胞数反而降低,同时γδ T细胞的扩增能力亦下降。此外,其他一些临床试验亦研究了唑来膦酸联合免疫治疗药物的临床疗效,见表 1。
上述相关研究均为探索性的Ⅰ/Ⅱ期临床试验,病例数较少,结论亦不尽相同,且临床客观有效率较低。而唑来膦酸联合免疫调节药物的疗效不仅与肿瘤类型有关,而且与药物的给药剂量、给药时序、给药周期等有关,这就要求我们进一步优化治疗方案才能获得最佳疗效。
2.2 基础研究除了在临床中探索唑来膦酸联合免疫调节药物的疗效外,同时在基础实验中亦研究了两者联合的疗效及作用机制。Li等[32]的研究就提示唑来膦酸联合IL-2及IL-18在体外可以明显扩增外周血中的γδ T细胞,扩增的γδ T细胞通过分泌NKG2D、IFN-γ、TNF-α及穿孔素等发挥抗肿瘤作用,抑制恶性间皮瘤的生长。此外,在神经母细胞瘤小鼠模型中发现,唑来膦酸联合γδ T细胞较单药唑来膦酸或单用γδ T细胞的疗效明显增加,可以延长小鼠的生存时间。其机制可能为唑来膦酸扩增γδ T细胞,γδ T细胞募集至肿瘤细胞并诱导产生IFN-γ,同时趋化因子CXCL10表达于肿瘤细胞表面,最终诱导抗肿瘤免疫反应,此外,唑来膦酸可以抑制肿瘤组织VEGF表达,两者联合作用最终抑制肿瘤增殖、诱导凋亡及抗血管和抗淋巴管生成[33]。最近研究亦发现,外周血单个核细胞在体外经唑来膦酸和IL-2培养后,能够增强γδ T细胞对恶性胶质瘤细胞和白血病肿瘤细胞的杀伤作用,这种杀伤作用依赖于T细胞受体(TcR)的存在[34]。上述基础研究亦证实唑来膦酸可以增加免疫调节药物的抗肿瘤效果。
3 存在的问题与展望
虽然目前唑来膦酸在体内外的抗肿瘤作用得到广泛验证,并在基础及临床研究中观察到唑来膦酸可以协同增加靶向及免疫调节药物的疗效,但必须看到它仍然存在一些问题:(1)目前许多基础实验中使用的唑来膦酸药物剂量均较临床常规使用的剂量大,而且药物处理时间长,因此,在实验研究中的用药情况必须符合临床实际才有意义。(2)虽然目前唑来膦酸在体外的作用机制已研究得比较深入,但体外及肿瘤动物模型与人类肿瘤内环境有很大差别。因此,需要更深入研究药物在人体内的作用机制。(3)目前唑来膦酸联合靶向及免疫调节药物的研究均为基础及探索性的Ⅰ/Ⅱ期临床研究和回顾性临床研究,尚未有大规模的Ⅲ期临床试验。因此,这些结论尚需更多临床试验去验证。
最近研究发现唑来膦酸可以协同增加靶向及免疫调节药物的抗肿瘤疗效,但也有些研究得出不同的结论。因此,需要继续深入探索唑来膦酸与靶向及免疫调节药物的相互作用机制,特别是在人体内的作用机制;同时在临床试验设计中筛选最可能获益的患者入组,优化治疗方案。总之,唑来膦酸与靶向及免疫调节药物的联合使用虽然面临挑战,但仍给目前的肿瘤治疗带来新的选择,值得进一步研究。
[1] | Luckman SP, Coxon FP, Ebetion FH, et al. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation:evidence from structure-activity relationships in J774 macrophages[J]. J Bone Miner Res, 1998, 13(11):1668-78. |
[2] | Dunford JE, Thompson K, Coxon FP, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogencontaining bisphosphonates[J]. J Pharmacol Exp Ther, 2001, 296(2):235-42. |
[3] | Lee MV, Fong EM, Singer FR, et al. Bisphosphonate treatment inhibits the growth of prostate cancer cells[J]. Cancer Res, 2001, 61(6):2602-8. |
[4] | Daubiné F, Le Gall C, Gasser J, et al. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis[J]. J. Natl Cancer Inst, 2007, 99(4):322-30. |
[5] | Ottewell PD, Wang N, Brown HK, et al. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo[J]. Clin Cancer Res, 2014, 20(11): 2922-32. |
[6] | Kijima T, Koga F, Fujii Y, et al. Zoledronic acid sensitizes renal cell carcinoma cells to radiation by downregulating STAT1[J]. PLoS One, 2013, 8(5):e64615. |
[7] | Gnant M, Mlineritsch B, Stoeger H, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with earlystage breast cancer:62-month follow-up from the ABCSG-12 randomised trial[J]. Lancet Oncol, 2011, 12(7):631-41. |
[8] | Fukai J, Koizumi F, Nakao N. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase[J]. PLoS One, 2014, 9(8):e104538. |
[9] | Thurnher M, Nussbaumer O, Gruenbacher G. Novel aspects of mevalonate pathway inhibitors as antitumor agents[J]. Clin Cancer Res, 2012, 18(13):3524-31. |
[10] | Castella B, Riganti C, Fiore F, et al. Immune modulation by zoledronic acid in human myeloma:an advantageous crosstalk between Vgamma9Vdelta2 T cells, alphabeta CD8+ T cells, regulatory T cells, and dendritic cells[J]. J Immunol, 2011, 187(4): 1578-90. |
[11] | Kiper HD, Tezcanli Kaymaz B, Gokbulut AA, et al. STAT pathway in the regulation of zoledronic acid-induced apoptosis in chronic myeloid leukemia cells[J]. Biomed Pharmacother, 2013, 67(6):527-32. |
[12] | Misso G, Porru M, Stoppacciaro A, et al. Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid[J]. Cancer Biol Ther, 2012, 13(14):1491-500. |
[13] | Beuselinck B, Wolter P, Karadimou A, et al. Concomitant oral tyrosine kinase inhibitors and bisphosphonates in advanced renal cell carcinoma with bone metastases[J]. Br J Cancer, 2012, 107(10):1665-71. |
[14] | Keizman D, Ish-Shalom M, Pili R, et al. Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma[J]. Eur J Cancer, 2012, 48(7):1031-7. |
[15] | K o s a k a T, Ya m a k i E, M o g i A, e t al. A c a s e of lung adenocarcinoma with postoperative recurrence of multiple bone metastases that showed a gradual complete response to combinedadministration of erlotinib and zoledronic acid[J]. Tumori, 2014, 100(2):e45-8. |
[16] | Guarneri V, Miles D, Robert N, et al. Bevacizumab and osteonecrosis of the jaw:incidence and association with bisphosphonate therapy in three large prospective trials in advanced breast cancer[J]. Breast Cancer Res Treat, 2010, 122(1): 181-8. |
[17] | Kuroda J, Kimura S, Segawa H, et al. The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate[J]. Blood, 2003, 102(6): 2229-35. |
[18] | Chuah C, Barnes DJ, Kwok M, et al. Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells[J]. Leukemia, 2005, 19(11):1896-904. |
[19] | Melisi D, Caputo R, Damiano V, et al. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer[J]. Endocr Relat Cancer, 2005, 12(4):1051-8. |
[20] | Chang JW, Hsieh JJ, Shen YC, et al. Bisphosphonate zoledronic acid enhances the inhibitory effects of gefitinib on EGFR-mutated non-small cell lung carcinoma cells[J]. Cancer Lett, 2009, 278(1): 17-26. |
[21] | Zhang W, Zhu XD, Sun HC, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects[J]. Clin Cancer Res, 2010, 16(13):3420-30. |
[22] | Previdi S, Scolari F, Chilà R, et al. Combination of the c-Met inhibitor tivantinib and zoledronic acid prevents tumor bone engraftment and inhibits progression of established bone metastases in a breast xenograft model[J]. PLoS One, 2013, 8(11): e79101. |
[23] | Previdi S, Maroni P, Matteucci E, et al. Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/ Wnt pathways[J]. Eur J Cancer, 2010, 46(9):1679-91. |
[24] | Santini D, Vincenzi B, Galluzzo S, et al. Repeated intermittent low-dose therapy with zoledronic acid induces an early, sustained, and long-lasting decrease of peripheral vascular endothelial growth factor levels in cancer patients[J]. Clin Cancer Res, 2007, 13(15 Pt 1):4482-6. |
[25] | Dieli F, Vermijlen D, Fulfaro F, et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer[J]. Cancer Res, 2007, 67(15): 7450-7. |
[26] | Sakamoto M, Nakajima J, Murakawa T, et al. Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded gammadeltaTcells:a phaseⅠclinical study[J]. J Immunother, 2011, 34(2):202-11. |
[27] | Lang JM, Kaikobad MR, Wallace M, et al. Pilot trial of interleukin-2 and zoledronic acid to augment gammadelta T cells as treatment for patients with refractory renal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(10):1447-60. |
[28] | Nakajima J, Murakawa T, Fukami T, et al. A phaseⅠstudy of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells[J]. Eur J Cardiothorac Surg, 2010, 37(5):1191-7. |
[29] | Meraviglia S, Eberl M, Vermijlen D, et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients[J]. Clin Exp Immunol, 2010, 161(2):290-7. |
[30] | Kobayashi H, Tanaka Y, Yagi J, et al. Phase Ⅰ/Ⅱ study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma[J]. Cancer Immunol Immunother, 2011, 60(8): 1075-84. |
[31] | Kunzmann V, Smetak M, Kimmel B, et al. Tumor-promoting versus tumor-antagonizing roles of gd T cells in cancer immunotherapy:results from a prospective phase Ⅰ/Ⅱ Trial[J]. J Immunother, 2012, 35(2):205-13. |
[32] | Li W, Kubo S, Okuda A, et al. Effect of IL-18 on expansion of gammadelta T cells stimulated by zoledronate and IL-2[J]. J Immunother, 2010, 33(3):287-96. |
[33] | Di Carlo E, Bocca P, Emionite L, et al. Mechanisms of the antitumor activity of human Vgamma9Vdelta2 T cells in combination with zoledronic acid in a preclinical model of neuroblastoma[J]. Mol Ther, 2013, 21(5):1034-43. |
[34] | Nakazawa T, Nakamura M, Park YS, et al. Cytotoxic human peripheral blood-derived gammadeltaT cells kill glioblastoma cell lines:implications for cell-based immunotherapy for patients with glioblastoma[J]. J Neurooncol, 2014, 116(1):31-9. |