文章信息
- 李静,武新虎,李兵,王振,沈泽天,孙妮,朱锡旭
- LI Jing, WU Xinhu, LI Bing, WANG Zhen, SHEN Zetian, SUN Ni, ZHU Xixu
- 电离辐射克服NSCLC细胞株H1975吉非替尼耐药的体外研究
- Ionizing Radiation Overcomes Gefitinib Resistance of Non-small Cell Lung Cancer Cell Line H1975 in vitro
- 肿瘤防治研究, 2015, 42(11): 1091-1094
- Cancer Res Prev Treat, 2015, 42(11): 1091-1094
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2015.11.007
-
文章历史
- 收稿日期: 2014-12-10
- 修回日期: 2015-04-28
目前肺癌不仅是肿瘤相关死亡率排名第一的疾病,也是全球最常见的肿瘤,严重危害人类健康。其中,NSCLC大约占所有肺癌病例的85%以上。既往研究中,7个大规模前瞻性随机临床研究均证实以吉非替尼为代表的EGFR-TKI一线治疗EGFR突变的NSCLC患者,其疗效优于化疗;对于EGFR突变的晚期NSCLC患者EGFR靶向治疗是目前首选的标准全身治疗方案[1]。
令人遗憾的是,靶向药物仍然存在着耐药问题。研究证实,EGFR基因的二次突变(T790M)与至少50%的耐药患者相关。目前,对于TKI耐药的NSCLC患者,尚无统一有效的治疗方式。许多临床回顾性分析显示,EGFR-TKI治疗期间进行局部放射治疗,可显著延长患者的中位无进展生存期,能够降低有效系统治疗中存在的耐药性或者延长患者耐药发生的时间[2, 3];张星南等研究结果亦提示电离辐射可使T790M突变所致吉非替尼耐药发生逆转,其可能原因是射线使EGFR发生了第三次突变[4]。本实验旨在研究电离辐射与吉非替尼的联合应用是否可以克服NSCLC获得性吉非替尼耐药的问题,并探讨其可能的作用机制。
1 材料与方法 1.1 实验对象及主要试剂人肺腺癌H1975细胞株购于北京北纳创联生物技术研究院、DMEM培养液为美国Gibco公司产品、DNA提取试剂盒为美国Omega公司产品、EGFR基因突变检测试剂盒购于厦门艾德生物技术有限公司、吉非替尼(Gefitinib)粉剂购于大连美仑生物技术有限公司、Anti-p-EGFR一抗、Anti-p-AKT一抗均为美国Abcam公司产品、直线加速器为瑞士医科达公司产品、PCR扩增仪ABI7900为美国ABI公司产品、流式细胞仪为美国Beckman Couter公司产品。
1.2 实时荧光定量PCR将对数生长期的H1975细胞进行不同剂量的X线辐射后,按DNA提取试剂盒的操作步骤提取细胞DNA,并测定其浓度;将提取的DNA用超纯水稀释至终浓度为2 ng/μl;按照EGFR基因突变检测试剂盒的操作步骤,加样,上机,采用2-ΔΔCt法对T790M突变进行相对定量分析。
1.3 流式细胞仪Annexin V-FITC法检测细胞的凋亡将正常对照组、单独电离辐射组、单独吉非替尼处理组和电离辐射联合吉非替尼处理组的细胞培养72 h后,胰酶消化,终止消化以2000 r/min离心5 min,弃去上清液,冷PBS清洗2次,收集(1~5)×105个细胞;加入500 μl的Binding Buffer轻轻吹打悬浮细胞;加入5 μl Annexin V-FITC吹打混匀后,加入5 μl PI缓慢吹打混匀;室温下避光、反应5~15 min;流式细胞仪检测其凋亡情况,实验重复3次。
1.4 蛋白印迹法检测凋亡相关蛋白表达水平不同处理组细胞培养48h后收集细胞,提取蛋白,Bradford法进行蛋白浓度测定;SDS-PAGE凝胶电泳蛋白分离后进行转膜,将蛋白转移的PVDF(polyvinylidene difluoride)膜置于含5%脱脂奶粉的TBST(Tris-buffered saline-Tween)中4℃过夜,TBST漂洗。分别加入兔抗人P-AKT一抗(1:500稀释)和兔抗人P-EGFR一抗(1:5000稀释),室温下温育2 h后用TBST液在摇床上漂洗3次,每次10 min;加入相对应的辣根过氧化物酶标记的二抗(1:10 000稀释),室温下温育90 min后,充分漂洗;采用电化学发光法进行显像,暗室中进行X线曝光压片,进行显影、定影,得到目的条带。
1.5 统计学方法采用GraphPad Prism5软件和SPSS13.0统计分析软件进行分析。数据用(x±s)表示,各组均数间的比较采用单因素方差分析,组间两两比较采用SNK方法。检验水准α=0.05。
2 结果 2.1 不同剂量电离辐射后H1975细胞T790M突变的相对变化采用2-ΔΔCt法对不同剂量X线辐射后H1975细胞的T790M突变进行相对定量分析。结果提示,电离辐射可降低H1975细胞的T790M突变量,差异具有统计学意义(P=0.039),见表 1、图 1。
2.2 电离辐射对吉非替尼诱导细胞凋亡的促进作用Annexin V-FITC法检测结果显示,正常对照组其凋亡率为(7.62±3.38)%;单独电离辐射组和吉非替尼组其凋亡率分别为(21.84±5.62)%和(17.38±6.78)%;联合处理组其凋亡率为(44.35±8.49)%。联合处理组的凋亡率明显高于单一处理组,差异有统计学意义(P=0.016)。以上结果表明,电离辐射具有明显地诱导吉非替尼耐药H1975细胞凋亡的作用,见图 2。
2.3 电离辐射联合吉非替尼对凋亡相关蛋白表达的影响应用免疫印迹法检测P-AKT、P-EGFR蛋白的表达水平,结果提示电离辐射联合吉非替尼与单独电离辐射或吉非替尼相比可明显抑制凋亡相关信号通路蛋白p-EGFR和p-AKT的表达,见图 3。
3 讨论EGFR-TKI对EGFR突变的NSCLC患者的疗效已经得到证实。虽然其初期疗效显著,多数患者可从中获益,但不可避免存在耐药问题。综合既往研究,EGFR-TKI继发耐药的机制主要包括以下几方面:(1)EGFR基因苏氨酸790(T790M)位的二次突变和MET基因的扩增大约占获得性耐药机制的70% ;其中T790M突变已被证实与至少50%的耐药患者相关,并且在少部分耐药患者中与MET扩增同时存在[5, 6, 7, 8, 9]。(2)下游信号分子的结构活化和EGFR旁路信号的激活:下游效应分子发生结构性活化后会越过上游的EGFR信号通路,降低EGFR-TKI的疗效。AKT通路在EGFR-TKI耐药中起主要作用,P-AKT能够抑制肿瘤细胞的凋亡、促进其增殖;研究提示EGFR-TKI耐药的NSCLC中存在AKT的结构性活化,对于AKT结构性活化的肺癌患者单独应用EGFR-TKI是不够的[10]。EGFR旁路TK信号的转导可以直接激活下游的EGFR信号通路,将细胞外信号传递到细胞内,调节细胞的增殖;当TK受体明显上调活性超过EGFR时,下游信号通路的活化就不依赖于EGFR,进而引起肿瘤细胞对EGFR-TKI的耐药性。(3)新的研究结果提示肿瘤细胞的遗传异质性可能是靶向治疗抵抗的基础。研究者认为:在肿瘤分子靶向治疗过程中,基因突变发生物竞选择,某些遗传性克隆会在治疗过程中丢失,继而引起肿瘤细胞的耐药[11, 12, 13, 14, 15]。
对于EGFR-TKI耐药患者的后续治疗,尚无统一、有效的治疗方案。放射治疗是肺癌治疗的有效手段,越来越多的临床回顾性分析结果提示TKI治疗期间联合放射治疗,患者的治疗耐受性良好,并且有更长的PFS和OS,能够降低系统治疗中存在的耐药性[16, 17, 18, 19, 20]。理论上,两者联合不但可以避免放疗后期肿瘤的放射抵抗,还可以增加对肿瘤的杀伤能力,避免EGFR-TKI继发耐药。
本研究选择的细胞株为吉非替尼耐药株H1975,为L858R和T790M双突变株。运用实时荧光定量PCR法对细胞的耐药T790M突变进行相对定量分析,结果提示随电离辐射剂量的增加,H1975细胞的T790M突变量相对降低,这与Gerlinger等[21]的观点相同。导致这种结果的原因可能是由于肿瘤细胞存在遗传克隆异质性,在靶向药物治疗的压力下,某些遗传克隆丢失、原来方案的靶向治疗效果降低;而放射治疗可以快速消除局部病灶或使肿瘤体积减小,肿瘤细胞数量减少,耐药性下降。
本研究采用Annexin V-FITC法检测耐药的H1975细胞凋亡,结果显示电离辐射联合吉非替尼处理组凋亡率明显高于单独电离辐射或吉非替尼处理组,两种治疗方式表现为协同作用。既往研究已经证实,放疗对EGFR突变细胞的凋亡主要是通过抑制非同源末端连接及同源修复、抑制电离辐射后DNA的修复而实现的[22, 23]。
本实验采用蛋白印迹法检测信号通路蛋白p-EGFR和p-AKT的表达,结果提示电离辐射联合吉非替尼显著抑制其表达。这说明,电离辐射联合吉非替尼具有明显的协同作用,可增强EGFR-TKI的活性,进而克服T790M突变所介导的耐药性。总之,本研究数据显示电离辐射联合吉非替尼在克服吉非替尼耐药方面以及增加吉非替尼的细胞毒性作用方面是一种有希望的治疗策略,为以后的临床研究及综合治疗模式提供理论基础。然而临床应用中,靶向药物与放疗的结合模式尚需更多、更深入的探索。
[1] | Cufer T, Knez L. Update on systemic therapy of advanced non-small-cell lung cancer[J]. Expert Rev Anticancer Ther, 2014, 14(10): 1189-203. |
[2] | Han B, Zhou X, Zhang RX, et al. Mutations of the epidermal growth factor receptor gene in NSCLC patients[J]. Oncol Lett, 2011, 2(6): 1233-7. |
[3] | Chang CC, Chi KH, Kao SJ, et al. Upfront gefitinib/erlotinib treatment followed by concomitant radiotherapy for advanced lung cancer: a mono-institutional experience[J]. Lung Cancer, 2011, 73(2): 189-94. |
[4] | Zhang XN, Zou W, Ma JA, et al. Change of radiosensitivity and reversal of drug resistance in gefitinib-resistant lung adenocarcinoma cell caused by T790M Mutation[J]. Zhongguo Quan Ke Yi Xue, 2014, 10(30): 3570-4. [张星南, 邹文, 马进安,等. T790M突变所致吉非替尼耐药肺腺癌细胞放射敏感性变化及耐药性逆转的研究[J]. 中国全科医学, 2014, 10(30): 3570-4.] |
[5] | Engelman JA, J?nne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer[J]. Clin Cancer Res, 2008, 14(10): 2895-9. |
[6] | Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib[J]. Proc Nati Acad Sci USA, 2007, 104(52): 20932-7. |
[7] | Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP [J]. Proc Nati Acad Sci USA, 2008, 105(6): 2070-5. |
[8] | Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib[J]. Proc Nati Acad Sci USA, 2005, 102(21): 7665-70. |
[9] | Godin-Heymann N, Ulkus L, Brannigan BW, et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor[J]. Mol Cancer Ther, 2008, 7(4): 874-9. |
[10] | Kokubo Y, Gemma A, Noro R, et al. Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA)[J]. Br J Cancer, 2005, 92(9): 1711-9. |
[11] | Lee AJ , Endesfelder D, Rowan A , et al. Chromosomal instability confers intrinsic multidrug resistance[J]. Cancer Res, 2011, 71(5): 1858-70. |
[12] | Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine [J]. Br J Cancer, 2010, 103(8): 1139-43. |
[13] | Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472(7341): 90-4. |
[14] | Ding L, Ellis MJ, Li S, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft[J]. Nature, 2010, 464(7291): 999-1005. |
[15] | Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer[J]. Nature, 2010, 467(7319): 1114-7. |
[16] | Norihisa Y, Nagata Y, Takayama K, et al. Stereotactic body radiotherapy for oligometastatic lung tumors[J]. Int J Radiat Oncol Biol Phys, 2008, 72(2): 398-403. |
[17] | Yu HA, Sima CS, Huang J, et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors[J]. J Thorac Oncol, 2013, 8(3): 346-51. |
[18] | Voltolini L, Rapicetta C, Luzzi L, et al. Surgical treatment of synchronous multiple lung cancer located in a different lobe or lung: high survival in node-negative subgroup[J]. Eur J Cardiothoracic Surg, 2010, 37(5): 1198-204. |
[19] | Yano T, Haro A, Yoshida T, et al. Prognostic impact of local treatment against postoperative oligometastases in non-small cell lung cancer[J]. J Surg Oncol, 2010, 102(7): 852-5. |
[20] | Weickhardt AJ, Scheier B, Burke JM, et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene addicted non-small cell lung cancer [J]. J Thorac Oncol, 2012, 7(12): 1807-14. |
[21] | Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883-92. |
[22] | Meyn RE, Munshi A, Haymach JV, et al. Receptor signaling as a regulatory mechanism of DNA repair[J]. Radiother Oncol, 2009, 92(3): 316-22. |
[23] | Myllynen L, Rieckmann T, Dahm-Daphi J, et al. In tumor cells regulation of DNA double strand break repair through EGF receptor involves both NHEJ and HR and is independent of p53 and K-Ras status[J]. Radiother Oncol, 2011, 101(1): 147-51. |