肿瘤防治研究  2014, Vol.41 Issue (01): 69-73.   PDF    
结直肠癌中miRNA基因及其靶基因多态性位点的研究进展
朱陵君1,陈志鹏1,王美林2,陈 涛3,束永前1    
1. 210029 南京,南京医科大学第一附属医院肿瘤科;
2.南京医科大学公共卫生学院分子毒理学实验室;
3. 南京医科大学第一附属医院普外科
摘要:结直肠癌是最常见的消化系统肿瘤之一。近年来的研究表明,miRNA在结直肠癌的发病过程 起着重要的作用。由于单核苷酸多态性(SNPs)的存在,miRNA的结构和功能可能发生变化,从而 影响结直肠癌的发病率。目前国内外对miRNA及其靶基因多态性与结直肠癌的关系研究不多。在本文 中,我们将对结直肠癌中miRNA表达谱的改变、miRNA基因及其靶基因多态性与结直肠癌的关系及 miRNA基因多态性对于结直肠癌的诊断、预后判断、预测疗效的应用前景等内容进行综述。
关键词: 结直肠癌     miRNA     靶基因     态性    
Study Advancement of MicroRNA and Its Target Gene Polymorphism and Colorectal Tumorigenesis
ZHU Lingjun1,CHEN Zhipeng1,WANG Meilin2,CHEN Tao3,SHU Yongqian1    
1.Department of Oncology, The First Afflilated Hospital of Nanjing Medical University,Nanjing 210029,China;
2. Department of Molecular and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education,School of Public Health,Nanjing Medical University;
3.Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
Abstract:Colorectal cancer(CRC) is one of the most common cancers worldwide. Recent years, some studies show that miRNAs contribute to the development of CRC. Single Nucleotide Polymorphisms (SNP) of miRNAs alos may be the risk of CRC due to change their structure and function.. In this review, alterations of miRNAs in CRC and the relation between SNPs in miRNAs and target sites and CRC risk would be showed. Furthermore, the SNPs in miRNAs may be useful in diagnose and prognosis of CRC and so on.
Key words: Colorectal cancer     miRNA     Target gene     Polymorphism    

0 引言

结直肠癌是常见的恶性肿瘤之一。在全世界 范围内,其病死率位居所有恶性肿瘤死因的第二 位[1]。近年来,我国的结直肠癌发病率及死亡率也 在不断攀升。性别、年龄、饮食习惯、体重指数 (BMI)和基因等皆是影响结直肠癌发病的重要因素 [2]。最近一些研究[3]指出,miRNA的变化对结直肠癌 的发生、发展、预后等起着重要的作用。

miRNA是一类进化上保守、长度为21~23 nt 的非编码单链小RNA。它们能抑制靶基因的转 录,阻断靶蛋白的合成。已有许多研究显示, miRNA在肿瘤的发生过程中起着重要的作用。 miRNA家族中有一部分可以促进肿瘤的生长,有 一部分则会抑制肿瘤的生长[4, 5]。同时,在miRNA 的基因及其靶基因中,还存在着许多单核苷酸多态 性(SNPs)。这些多态性可能会造成miRNA的表 达、结构及功能发生变化,从而影响各种肿瘤的 发病过程。因此,这些多态性或许可以成为预测 肿瘤发生、发展及预后的生物标志[6]

目前,国外有部分针对miRNA基因多态性与 结直肠癌发病率关系的研究,但国内对此方面的 研究较少,为此我们对结直肠癌组织中miRNA表 达谱的改变、miRNA基因及其靶基因多态性与结 直肠癌的关系及miRNA基因多态性对于结直肠癌 的诊断、预后判断、预测疗效的应用前景等内容 进行了综述。 1 结直肠癌中miRNA表达谱的改变

许多文献均指出,结直肠癌组织与正常组织相比,其miRNA表达水平会发生改变[7, 8, 9]表1中 列出了部分与结直肠癌相关的miRNA及其对应的 靶基因。一些miRNA已经被发现可能具有促进或 抑制结直肠癌的作用。例如,miR-21是一种具有 致癌作用的miRNA,在进展期结肠癌组织中过表 达[8]。另一方面,一些miRNA,例如miR-1、miR- 30a-5p等,已经被证实在结直肠癌中有表达降低的 情况,因而被认为是具有抑癌作用的miRNA[7, 9]。 其他在结直肠癌中比较重要的miRNA还有miR-17– 92簇、miR-24、miR-31、miR-135a/b、miR-143、 miR-145和miR-200c等[10, 11, 12, 13, 14, 15]

表1 结直肠癌中miRNA表达谱的改变情况 Table 1 Alterations of miRNAs in Colorectal cancer
2 miRNA基因多态性与结直肠癌的关系 2.1 miRNA基因多态性与结直肠癌发病风险的关系 国外的部分文献指出,miRNA基因多态性与 结直肠癌的发生、发展及预后具有显著的相关 性[16, 17]。部分miRNA基因多态性与结直肠癌的关 系,见表2。其中,miR-196a2基因rs11614913位点 T>C突变被认为与结直肠癌的发病率相关,其作用 靶点HOXB8在骨髓细胞分化和生长过程中起着重 要作用[18]。但先前数个关于miR-196a2基因多态性 与结直肠癌关系的研究结果并不一致。三篇文献 报道miR-196a2基因多态性与结直肠癌发病风险相 关[6, 19, 20],另一篇文献报道miR-196a2基因多态性与 结直肠癌发病风险无关[21]。但最近发表的一篇荟 萃分析显示,miR-196a2基因多态性与包括结直肠 癌在内的多种消化系统肿瘤的发病率有关[22]

此外,Kyung等[19]研究了韩国人群中miR- 146a基因rs2910164位点C>G突变,miR-149基因 rs2292832位点C>T突变和miR- 499基因rs3746444 位点A>G突变的多态性与结直肠癌发病率的关 系。这些miRNA均与细胞周期和细胞凋亡的 调控机制有关。该研究的最终结果显示,miR- 146a基因rs2910164位点C>G突变和miR-149基因 rs2292832位点C>T突变的多态性在部分亚组中有 统计学意义。

表2 部分miRNA多态性与结直肠癌的关系 Table 2 Relation between miRNA polymorphism and colorectal cancer

综合以上研究结果,我们认为部分miRNA基 因的多态性可能通过影响其靶基因的功能,进而 影响结直肠癌的发病风险。 2.2 miRNA基因多态性对于判断结直肠癌药物治疗疗效及预后的潜在价值 miRNA基因多态性也被发现与结直肠癌的药 物治疗敏感度相关。Boni等[23]检测了接受5-Fu和 CPT-11化疗的61位患者体内的18个多态性位点。 研究结果显示pri-miR26a-1的rs7372209位点多态性与肿瘤对化疗的反应和疾病进展时间有着显著 的相关性。该位点基因型为C/C和C/T的患者的治 疗效果要明显好于T/T型。此外,pri-miR-100的 rs1834306位点多态性与相对较长的疾病进展期相 关,exportin-5的rs11077位点多态性与疾病控制率 相关等也已被证实。该研究的结果说明了miRNA 生物合成系统中的多态性与结直肠癌药物治疗的 效果相关,并提示了miRNA多态性或许可以作为 接受5-Fu和CPT-11治疗的转移性结直肠癌患者临 床治疗效果预测的指标。

关于miRNA基因多态性与结直肠癌患者预后 的关系,国内外也有部分学者进行了研究。刑金良 等[24]发现pre-miR-423基因rs6505162位点的多态性 与结直肠癌患者的总生存和无病生存期相关;而pre- miR-608基因rs4919510位点多态性与结直肠癌患者 的无病生存期相关。但这些结果仅在接受化疗的 结直肠癌患者中有意义。在未接受化疗的患者中, 这些多态性均与预后无关。该研究的结果表明, 这些位点有可能通过影响化疗疗效,从而改变患 者的生存预后。在另一个研究中,Lee等[25]发现 miR-492基因rs2289030位点C/G和G/G基因型的结 直肠癌患者,其无病生存期明显短于C/C基因型的 患者,但是其总生存期并无显著差异。以上的研 究结果证明,miRNA基因多态性有可能用于帮助 判断结直肠癌患者的预后。 3 miRNA靶基因多态性与结直肠癌的关系

除了miRNA本身的基因多态性,其靶基因上 与miRNA结合位点的多态性也可能影响结直肠癌 的发病风险。靶基因上miRNA结合位点的多态性 可能削弱miRNA与靶基因的结合或者使得miRNA 与靶基因之间形成一个完美的匹配序列,因而可 能削弱或增强miRNA对靶基因的作用。目前国外 对miRNA结合位点多态性的研究较少。已有的研 究显示,IC53、CD86、INSR等基因的部分多态性 位点与结直肠癌易感性相关[17, 26, 27],部分靶基因结 合位点的多态性在表3中列出。其中,IC53基因的 rs2737位点发生T>C突变时,可形成一个miR-379 的结合位点。miR-379与该位点结合后可抑制IC53 的转录过程,减少了结直肠癌的发病可能;CD86 基因rs17281995位点发生G>C突变时,miR-337、 miR-582和miR-200a与CD86基因的结合削弱,而 miR-184和miR-212与CD86基因的结合增强,最终 导致结直肠癌发病风险升高[17]

表3 部分miRNA靶基因多态性与结直肠癌的关系 Table 3 Relation between target gene polymorphism and colorectal cancer

对于miRNA靶基因多态性与结直肠癌药物治 疗的关系,国外也有少量研究。dhfr基因的rs829 位点为miR-24结合位点,其C>T多态性可能影响 miR-24的功能,从而改变MTX对肿瘤细胞的杀 伤作用[13]。kras基因中一个let-7 miRNA结合位点 (lcs6)则被观察到与kras野生型的转移性结直肠癌 患者使用西妥昔单抗治疗的客观缓解率有关。此 位点T/G或G/G基因型的患者客观缓解率为42%, 而T/T基因型的患者客观缓解率仅为9%。同时, T/G和G/G基因型的患者与T/T基因型的患者相比, 有着更长的中位生存期和总生存期[28]4 展望

目前已经明确,miRNA的表达谱改变在结直 肠癌中起着关键性的作用。一系列的研究表明了 不同的miRNA影响着结直肠癌的发生、发展和转移等。最新的研究则提示了miRNA及其靶基因 的多态性也可能影响结直肠癌的发病风险。但目 前在miRNA及其靶基因多态性与结直肠癌的关 系上,国内外的研究仍然较少。希望在不远的将 来,越来越多关于此方面的研究能够不断提升我 们对结直肠癌的认识,为今后的研究打下更为坚 实的基础。

参考文献
[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005,55(2):74-108.
[2] Haggar FA, Boushey RP. Colorectal cancer epidemiology: ncidence, mortality, survival, and risk factors[J]. Clinics Colon ectal Surg, 2009,22(4):191-7.
[3] Dong Y, Wu WK, Wu CW, et al. microRNA dysregulation n colorectal cancer: a clinical perspective[J]. Br J Cancer, 011,104(6):893-8.
[4] Chen L, Wang X, Wang H, et al. miR-137 is frequently down- egulated in glioblastoma and is a negative regulator of COX-2[J]. ur J Cancer, 2012,48(16):3104-11.
[5] Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role n cancer[J]. Nat Rev Cancer, 2006,6(4):259-69.
[6] Zhan JF, Chen LH, Chen ZX, et al. A functional variant n microRNA-196a2 is associated with susceptibility of olorectal cancer in a Chinese population[J]. Arch Med Res, 011,42(2):144-8.
[7] Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, et al. miR- 0a-5p suppresses tumor growth in colon carcinoma by targeting TL[J]. Carcinogenesis, 2012,33(4):732-9.
[8] Liu K, Li G, Fan C, et al. Increased expression of microRNA-21 nd its association with chemotherapeutic response in human olorectal cancer[J]. J Int Med Res, 2011,39(6):2288-95.
[9] Reid JF, Sokolova V, Zoni E, et al. miRNA profi ling in colorectal ancer highlights miR-1 involvement in met-dependent roliferation[J]. Mol Cancer Res, 2012,10(4):504-15.
[10] Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and igration in human colon cancer cells sw480/620 by targeting EB1[J]. Clin Exp Metastasis, 2012,29(5):457-69.
[11] Humphreys KJ, Cobiac L, Le Leu RK, et al. Histone deacetylase nhibition in colorectal cancer cells reveals competing roles for embers of the oncogenic miR-17-92 cluster[J]. Mol Carcinog, 013,52(6):459-74.
[12] Li JM, Zhao RH, Li ST, et al. Down-regulation of fecal miR-143 nd miR-145 as potential markers for colorectal cancer[J]. Saudi ed J, 2012,33(1):24-9.
[13] Mishra PJ, Song B, Mishra PJ, et al. miR-24 tumor suppressor ctivity is regulated independent of p53 and through a target site olymorphism[J]. PloS One, 2009,4(12):e8445.
[14] Nagel R, le Sage C, Diosdado B, et al. Regulation of the denomatous polyposis coli gene by the miR-135 family incolorectal cancer[J]. Cancer Res, 2008,68(14):5795-802.
[15] Slaby O, Svoboda M, Fabian P, et al. Altered expression f miR-21, miR-31, miR-143 and miR-145 is related to linicopathologic features of colorectal cancer[J]. Oncology, 007,72(5-6):397-402.
[16] Schetter AJ, Harris CC. Alterations of micrornas contribute to olon carcinogenesis[J]. Semin Oncol, 2011,38(6):734-42.
[17] Landi D, Moreno V, Guino E, et al. Polymorphisms affecting icroRNA regulation and associated with the risk of dietary- elated cancers: a review from the literature and new evidence or a functional role of rs17281995 (cd86) and rs1051690 (insr), reviously associated with colorectal cancer[J]. Mutat Res, 011,717(1-2):109-15.
[18] Kawasaki H, Taira K. microRNA-196 inhibits hoxb8 expression n myeloid differentiation of hl60 cells[J]. Nucleic Acids Symp er (Oxf), 2004,48:211-2.
[19] Min KT, Kim JW, Jeon YJ, et al. Association of the miR-146ac>g, 49c>t, 196a2c>t, and 499a>g polymorphisms with colorectal ancer in the korean population[J]. Mol Carcinog, 2012,51 Suppl :E65-73.
[20] Zhu L, Chu H, Gu D, et al. A functional polymorphism in iRNA-196a2 is associated with colorectal cancer risk in a hinese population[J]. DNA Cell Biol, 2012,31(3):350-4.
[21] Chen H, Sun LY, Chen LL, et al. A variant in microRNA-196a2 is ot associated with susceptibility to and progression of colorectal ancer in Chinese[J]. Intern Med J, 2012,42(6):e115-9.
[22] Guo J, Jin M, Zhang M, et al. A genetic variant in miR-196a2 ncreased digestive system cancer risks: a meta-analysis of 15 ase-control studies[J]. PloS One, 2012,7(1):e30585.
[23] Boni V, Zarate R, Villa JC, et al. Role of primary miRNA olymorphic variants in metastatic colon cancer patients treated ith 5-fluorouracil and irinotecan[J]. Pharmacogenomics J, 011,11(6):429-36.
[24] Xing J, Wan S, Zhou F, et al. Genetic polymorphisms in pre- icroRNA genes as prognostic markers of colorectal cancer[J]. ancer Epidemiol Biomarkers Prev, 2012,21(1):217-27.
[25] Lee HC, Kim JG, Chae YS, et al. Prognostic impact of icroRNA-related gene polymorphisms on survival of atients with colorectal cancer[J]. J Cancer Res Clin Oncol, 010,136(7):1073-8.
[26] Landi D, Gemignani F, Naccarati A, et al. Polymorphisms within icro-RNA-binding sites and risk of sporadic colorectal cancer[J]. arcinogenesis, 2008,29(3):579-84.
[27] Chen J, Shi Y, Li Z, et al. A functional variant of ic53 orrelates with the late onset of colorectal cancer[J]. Mol Med, 011,17(7-8):607-18.
[28] Zhang W, Winder T, Ning Y, et al. A let-7 microRNA-binding ite polymorphism in 3'-untranslated region of kras gene predicts esponse in wild-type kras patients with metastatic colorectal ancer treated with cetuximab monotherapy[J]. Ann Oncol, 011,22(1):104-9.
[29] Akao Y, Nakagawa Y, Naoe T. Let-7 microRNA functions as a otential growth suppressor in human colon cancer cells[J]. Biol harm Bull, 2006,29(5):903-6.
[30] Xi Y, Formentini A, Chien M, et al. Prognostic values of micrornas n colorectal cancer[J]. Biomark Insights, 2006,2:113-21.
[31] Monzo M, Navarro A, Bandres E, et al. Overlapping expression f microRNAs in human embryonic colon and colorectal cancer[J]. Cell Res, 2008,18(8):823-33.
[32] Chang KH, Miller N, Kheirelseid EA, et al. microRNA-21 and DCD4 expression in colorectal cancer[J]. Eur J Surg Oncol, 011,37(7):597-603.
[33] Liu M, Tang Q, Qiu M, et al. miR-21 targets the tumor suppressor hob and regulates proliferation, invasion and apoptosis in olorectal cancer cells[J]. FEBS lett, 2011,585(19):2998-3005.
[34] Yamakuchi M, Yagi S, Ito T, et al. microRNA-22 regulates ypoxia signaling incolon cancer cells[J]. PloS One, 2011,6(5): 20291.
[35] Almeida MI, Nicoloso MS, Zeng L, et al. Strand-specifi c miR-28- p and miR-28-3p have distinct effects in colorectal cancer cells[J]. Gastroenterology, 2012,142(4):886-96,e889.
[36] Kuo TY, Hsi E, Yang IP, et al. Computational analysis of mRNA xpression profiles identifies microRNA-29a/c as predictor f colorectal cancer early recurrence[J]. PloS One, 2012,7(2): 31587.
[37] Yu XF, Zou J, Bao ZJ, et al. miR-93 suppresses proliferation and olony formation of human colon cancer stem cells[J]. World J astroenterol, 2011,17(42):4711-7.
[38] Huang Z, Huang S, Wang Q, et al. MicroRNA-95 promotes cell roliferation and targets sorting Nexin 1 in human colorectal arcinoma[J]. Cancer Res, 2011,71(7):2582-9.
[39] Strillacci A, Griffoni C, Sansone P, et al. MiR-101 downregulation s involved in cyclooxygenase-2 overexpression in human colon ancer cells[J]. Exp Cell Res, 2009,315(8):1439-47.
[40] Wang X, Lam EK, Zhang J, et al. Microrna-122a functions as a ovel tumor suppressor downstream of adenomatous polyposis oli in gastrointestinal cancers[J]. Biochem Biophys Res ommun, 2009,387(2):376-80.
[41] Li XM, Wang AM, Zhang J, et al. Down-regulation of miR-126 xpression in colorectal cancer and its clinical significance[J]. ed Oncol, 2011,28(4):1054-7.
[42] Guo C, Sah JF, Beard L, et al. The noncoding rna, miR-126, uppresses the growth of neoplastic cells by targeting hosphatidylinositol 3-kinase signaling and is frequently ost in colon cancers[J]. Genes Chromosomes Cancer, 008,47(11):939-46.
[43] Hu G, Chen D, Li X, et al. miR-133b regulates the MET proto- ncogene and inhibits the growth of colorectal cancer cells in itro and in vivo[J]. Cancer Biol Ther, 2010,10(2):190-7.
[44] Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS n colorectal tumorigenesis[J]. Oncogene, 2009,28(10):1385-92.
[45] Ng EK, Tsang WP, Ng SS, et al. MicroRNA-143 targets DNA ethyltransferases 3A in colorectal cancer[J]. Br J Cancer, 009,101(4):699-706.
[46] Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and -145 in colon ancer[J]. DNA Cell Biol, 2007,26(5):311-20.
[47] Xu N, Papagiannakopoulos T, Pan G, et al. MicroRNA-145 egulates OCT4, SOX2, and KLF4 and represses pluripotency in uman embryonic stem cells[J]. Cell, 2009,137(4):647-58.
[48] Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA 145 targets he insulin receptor substrate-1 and inhibits the growth of colon ancer cells[J]. J Biol Chem, 2007,282(45):32582-90.
[49] Song Y, Xu Y, Wang Z, et al. MicroRNA-148b suppresses cell rowth by targeting cholecystokinin-2 receptor in colorectal ancer[J]. Int J Cancer, 2012,131(5):1042-51.
[50] Karaayvaz M, Pal T, Song B, et al. Prognostic significance f miR-215 in colon cancer[J]. Clin Colorectal Cancer, 011,10(4):340-7.
[51] Liu L, Chen L, Xu Y, et al. microRNA-195 promotes apoptosis nd suppresses tumorigenicity of human colorectal cancer cells[J]. iochem Biophys Res Commun, 2010,400(2):236-40.
[52] Chiang Y, Song Y, Wang Z, et al. Aberrant expression of mir-203 nd its clinical signifi cance in gastric and colorectal cancers[J]. J astrointest Surg, 2011,15(1):63-70.
[53] Sun K, Wang W, Zeng JJ, et al. MicroRNA-221 inhibits DKN1C/p57 expression in human colorectal carcinoma[J]. Acta harmacol Sin, 2011,32(3):375-84.
[54] Zhang Y, He X, Liu Y, et al. microRNA-320a inhibits tumor nvasion by targeting neuropilin 1 and is associated with liver etastasis in colorectal cancer[J]. Oncol Rep, 2012,27(3):685-94.
[55] Wang H, Wu J, Meng X, et al. MicroRNA-342 inhibits colorectal ancer cell proliferation and invasion by directly targeting DNA ethyltransferase 1[J]. Carcinogenesis, 2011,32(7):1033-42.
[56] Nie J, Liu L, Zheng W, et al. microRNA-365, down-regulated n colon cancer, inhibits cell cycle progression and promotes poptosis of colon cancer cells by probably targeting Cyclin D1 nd Bcl-2[J]. Carcinogenesis, 2012,33(1):220-5.
[57] Dai X, Chiang Y, Wang Z, et al. Expression levels of icroRNA-375 in colorectal carcinoma[J]. Mol Med Rep, 012,5(5):1299-304.
[58] Bandres E, Bitarte N, Arias F, et al. Microrna-451 regulates acrophage migration inhibitory factor production and roliferation of gastrointestinal cancer cells[J]. Clin Cancer Res, 009,15(7):2281-90.
[59] Liu X, Zhang Z, Sun L, et al. MicroRNA-499-5p promotes cellular nvasion and tumor metastasis in colorectal cancer by targeting OXO4 and PDCD4[J]. Carcinogenesis, 2011,32(12):1798-805.
[60] Tsang WP, Ng EK, Ng SS, et al. Oncofetal h19-derived mir-675 egulates tumor suppressor rb in human colorectal cancer[J]. arcinogenesis, 2010,31(3):350-8.