Citation: | YAN Yaxian, WANG Wei. Research Progress on Regulation of Tumor-Associated Macrophages Polarization by Intratumoral Microorganisms in Pancreatic Cancer[J]. Cancer Research on Prevention and Treatment, 2025, 52(3): 241-246. DOI: 10.3971/j.issn.1000-8578.2025.24.1246 |
Recent studies have revealed the presence of specific microorganisms in pancreatic cancer. Accumulating evidence suggests a correlation between changes in the microbiome and tumor immune function in pancreatic cancer. Various stimuli within the tumor microenvironment (TME) prompt the polarization of tumor-associated macrophages (TAMs) toward the immune-activating M1 phenotype or immunosuppressive M2 phenotype. Microorganisms in the TME can facilitate or inhibit tumor growth, metastasis, drug resistance, and other processes by influencing the phenotypes and functions of macrophages. This article reviews the mechanisms by which anaerobic bacteria regulate TAM polarization in the TME of pancreatic cancer. Additionally, it discusses the effects of bacterial components and metabolites on TAM polarization, aiming to provide new targets for the diagnosis and treatment of pancreatic cancer from a microbial perspective.
Competing interests: The authors declare that they have no competing interests.
[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834
|
[2] |
Gnanasekaran J, Binder Gallimidi A, Saba E, et al. Intracellular Porphyromonasgingivalis Promotes the Tumorigenic Behavior of Pancreatic Carcinoma Cells[J]. Cancers (Basel), 2020, 12(8): 2331. doi: 10.3390/cancers12082331
|
[3] |
Abe S, Masuda A, Matsumoto T, et al. Impact of intratumoral microbiome on tumor immunity and prognosis in human pancreatic ductal adenocarcinoma[J]. J Gastroenterol, 2024, 59(3): 250-262. doi: 10.1007/s00535-023-02069-5
|
[4] |
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2023, 22(1): 118. doi: 10.1186/s12943-023-01813-y
|
[5] |
Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer[J]. Nature, 2023, 615(7950): 168-174. doi: 10.1038/s41586-023-05728-y
|
[6] |
Chaib M, Hafeez BB, Mandil H, et al. Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore[J]. Commun Biol, 2022, 5(1): 1181. doi: 10.1038/s42003-022-04102-4
|
[7] |
Lin J, Huang D, Xu H, et al. Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases[J]. Front Immunol, 2022, 13: 952040. doi: 10.3389/fimmu.2022.952040
|
[8] |
Huang Y, Tian C, Li Q, et al. TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells[J]. Int J Mol Sci, 2019, 20(8): 2023. doi: 10.3390/ijms20082023
|
[9] |
Hezaveh K, Shinde RS, Klötgen A, et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity[J]. Immunity, 2022, 55(2): 324-340. e8.
|
[10] |
Liu M, Ren Y, Zhou Z, et al. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia[J]. Cancer Cell, 2024, 42(5): 885-903. e4.
|
[11] |
Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res, 2014, 74(18): 5057-5069. doi: 10.1158/0008-5472.CAN-13-3723
|
[12] |
Liang G, Wang H, Shi H, et al. Porphyromonas gingivalis Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma through the miR-194/GRHL3/PTEN/Akt Axis[J]. ACS Infect Dis, 2020, 6(5): 871-881. doi: 10.1021/acsinfecdis.0c00007
|
[13] |
Yang J, Li Y, Sun Z, et al. Macrophages in pancreatic cancer: An immunometabolic perspective[J]. Cancer Lett, 2021, 498: 188-200. doi: 10.1016/j.canlet.2020.10.029
|
[14] |
Zhan T, Zou Y, Han Z, et al. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms[J]. Clin Transl Med, 2024, 14(8): e1799. doi: 10.1002/ctm2.1799
|
[15] |
Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-Polarized Tumor-Associated Macrophage in Pancreatic Cancer[J]. J Surg Res, 2011, 167(2): e211-e219. doi: 10.1016/j.jss.2009.05.026
|
[16] |
Shi Q, Shen Q, Liu Y, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance[J]. Cancer Cell, 2022, 40(10): 1207-1222. e10.
|
[17] |
Vidotto T, Melo CM, Castelli E, et al. Emerging role of PTEN loss in evasion of the immune response to tumours[J]. Br J Cancer, 2020, 122(12): 1732-1743. doi: 10.1038/s41416-020-0834-6
|
[18] |
Zhang JY, Zhu WW, Wang MY, et al. Cancer-associated fibroblasts promote oral squamous cell carcinoma progression through LOX-mediated matrix stiffness[J]. J Transl Med, 2021, 19(1): 513. doi: 10.1186/s12967-021-03181-x
|
[19] |
Kim ML, Sung KR, Kwon J, et al. Statins Suppress TGF-β2-Mediated MMP-2 and MMP-9 Expression and Activation Through RhoA/ROCK Inhibition in Astrocytes of the Human Optic Nerve Head[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 29. doi: 10.1167/iovs.61.5.29
|
[20] |
Udayasuryan B, Ahmad RN, Nguyen TTD, et al. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling[J]. Sci Signal, 2022, 15(756): eabn4948. doi: 10.1126/scisignal.abn4948
|
[21] |
Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis[J]. Oncotarget, 2015, 6(9): 7209-7220. doi: 10.18632/oncotarget.3109
|
[22] |
Li S, Fuhler GM, Bn N, et al. Pancreatic cyst fluid harbors a unique microbiome[J]. Microbiome, 2017, 5(1): 147. doi: 10.1186/s40168-017-0363-6
|
[23] |
Kohi S, Macgregor-Das A, Dbouk M, et al. Alterations in the Duodenal Fluid Microbiome of Patients With Pancreatic Cancer[J]. Clin Gastroenterol Hepatol, 2022, 20(2): e196-e227. doi: 10.1016/j.cgh.2020.11.006
|
[24] |
Guo W, Zhang Y, Guo S, et al. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer[J]. Commun Biol, 2021, 4(1): 1019. doi: 10.1038/s42003-021-02557-5
|
[25] |
Riquelme E, Zhang Y, Zhang L, et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes[J]. Cell, 2019, 178(4): 795-806. e12.
|
[26] |
Chen T, Li Q, Wu J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol Immunother, 2018, 67(10): 1635-1646. doi: 10.1007/s00262-018-2233-x
|
[27] |
Wu J, Li K, Peng W, et al. Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling[J]. Int Immunopharmacol, 2019, 74: 105724. doi: 10.1016/j.intimp.2019.105724
|
[28] |
Wu J, Wang Y, Jiang Z. Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages[J]. Expert Rev Proteomics, 2020, 17(2): 175-185. doi: 10.1080/14789450.2020.1738223
|
[29] |
Lacey DC, Achuthan A, Fleetwood AJ, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models[J]. J Immunol, 2012, 188(11): 5752-5765. doi: 10.4049/jimmunol.1103426
|
[30] |
Zhang S, Rautela J, Bediaga NG, et al. CIS controls the functional polarization of GM-CSF-derived macrophages[J]. Cell Mol Immunol, 2023, 20(1): 65-79.
|
[31] |
龚忠诚, 买热拍提•买明, 李晨曦, 等. 牙龈卟啉单胞菌与常见消化系统恶性肿瘤相关性的研究现状[J]. 新疆医科大学学报, 2023, 46(5): 596-600. [Gong ZC, Mairepaiti•MM, Li CX, et al. Research progress on the relationship between Porphyromonas gingivalis and the malignancy of the digestive system[J]. Xinjiang Yi Ke Da Xue Xue Bao, 2023, 46(5): 596-600.] doi: 10.3969/j.issn.1009-5551.2023.05.004
Gong ZC, Mairepaiti•MM, Li CX, et al. Research progress on the relationship between Porphyromonas gingivalis and the malignancy of the digestive system[J]. Xinjiang Yi Ke Da Xue Xue Bao, 2023, 46(5): 596-600. doi: 10.3969/j.issn.1009-5551.2023.05.004
|
[32] |
Koliarakis I, Messaritakis I, Nikolouzakis TK, et al. Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer[J]. Int J Mol Sci, 2019, 20(17): 4146. doi: 10.3390/ijms20174146
|
[33] |
Chen SM, Hsu LJ, Lee HL, et al. Lactobacillus Attenuate the Progression of Pancreatic Cancer Promoted by Porphyromonas Gingivalis in K-rasG12D Transgenic Mice[J]. Cancers (Basel), 2020, 12(12): 3522. doi: 10.3390/cancers12123522
|
[34] |
Li P, Shu Y, Gu Y. The potential role of bacteria in pancreatic cancer: a systematic review[J]. Carcinogenesis, 2020, 41(4): 397-404. doi: 10.1093/carcin/bgaa013
|
[35] |
Tan Q, Ma X, Yang B, et al. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils[J]. Gut Microbes, 2022, 14(1): 2073785. doi: 10.1080/19490976.2022.2073785
|
[36] |
Li R, Hu Y, Hou S. An Exploration of Oral-Gut Pathogens Mediating Immune Escape of Pancreatic Cancer via miR-21/PTEN Axis[J]. Front Microbiol, 2022, 13: 928846. doi: 10.3389/fmicb.2022.928846
|
[37] |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. doi: 10.1038/s41586-019-1678-1
|
[38] |
Diskin C, Ryan TAJ, O’Neill LAJ. Modification of Proteins by Metabolites in Immunity[J]. Immunity, 2021, 54(1): 19-31. doi: 10.1016/j.immuni.2020.09.014
|
[39] |
Tanaka T, Masuda A, Inoue J, et al. Integrated analysis of tertiary lymphoid structures in relation to tumor-infiltrating lymphocytes and patient survival in pancreatic ductal adenocarcinoma[J]. J Gastroenterol, 2023, 58(3): 277-291. doi: 10.1007/s00535-022-01939-8
|
[40] |
Yin Z, Wang Y, Feng X, et al. Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment[J]. Microb Biotechnol, 2024, 17(10): e70031. doi: 10.1111/1751-7915.70031
|
[41] |
Zhu Z, Yi B, Tang Z, et al. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis[J]. BMC Cancer, 2023, 23(1): 1044. doi: 10.1186/s12885-023-11557-z
|
[42] |
Conde-Pérez K, Aja-Macaya P, Buetas E, et al. The multispecies microbial cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a precision biomarker for colorectal cancer diagnosis[J]. Mol Oncol, 2024, 18(5): 1093-1122. doi: 10.1002/1878-0261.13604
|
[43] |
Dong D, Zhang G, Yang J, et al. The role of iron metabolism in cancer therapy focusing on tumor-associated macrophages[J]. J Cell Physiol, 2019, 234(6): 8028-8039. doi: 10.1002/jcp.27569
|
[44] |
Scheithauer TPM, Herrema H, Yu H, et al. Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction[J]. Gut Microbes, 2022, 14(1): 2111951. doi: 10.1080/19490976.2022.2111951
|
[45] |
O’ Donnell MM, Harris HMB, Lynch DB, et al. Lactobacillus ruminis strains cluster according to their mammalian gut source[J]. BMC Microbiol, 2015, 15: 80. doi: 10.1186/s12866-015-0403-y
|
[46] |
Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses[J]. Cell Mol Immunol, 2022, 19(4): 540-553. doi: 10.1038/s41423-022-00841-w
|
[47] |
Mirji G, Worth A, Bhat SA, et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer[J]. Sci Immunol, 2022, 7(75): eabn0704. doi: 10.1126/sciimmunol.abn0704
|
[48] |
Zhang Q, Zhao Q, Li T, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity[J]. Cell Metab, 2023, 35(6): 943-960. e9.
|
[49] |
Russell WR, Duncan SH, Scobbie L, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein[J]. Mol Nutr Food Res, 2013, 57(3): 523-535. doi: 10.1002/mnfr.201200594
|
[50] |
Liu LW, Xie Y, Li GQ, et al. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling[J]. Br J Pharmacol, 2023, 180(5): 647-666. doi: 10.1111/bph.15980
|
[51] |
Liu L, Zhang T, Sui Y, et al. Gut microbiota affects pancreatic fibrotic progression through immune modulation in chronic pancreatitis[J]. Microb Pathog, 2023, 177: 106035. doi: 10.1016/j.micpath.2023.106035
|