Citation: | QIU Dasheng, James NAGARAJAH, CUI Diansheng, WEI Shaozhong. Current Status and Progress of Radioligand Therapy in Advanced Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 110-117. DOI: 10.3971/j.issn.1000-8578.2025.24.0971 |
In 1946, radioactive iodine 131 was first used for the treatment of differentiated thyroid cancer. However, the limitations of early nuclear medicine technology, the lack of specificity, the efficacy of nuclide therapy, and its adverse effects have limited its widespreadly clinical application. In recent years, scientists and clinicians have linked radioisotopes to targeted parts (tumor-specific small molecules, peptides, or antibodies) to develop safe and effective nuclear drugs. Ra-223, Lutathera (lutetium-177), and Pluvicto (177Lu-PSMA-617) have been successfully used in clinical treatment. Radioligand therapy has gradually shown good efficacy in different tumors. This paper focuses on the current situation of the application of therapeutic radioligand drugs in advanced malignant tumors and the latest research results and treatment strategies to achieve more accurate and personalized treatment methods, thereby to improve the curative effect, and reduce adverse reactions.
Competing interests: The authors declare that they have no competing interests.
[1] |
国家药品监督管理局药品审评中心. 受理品种目录[EB/OL]. 2024-9-24. https://www.cde.org.cn/main/xxgk/listpage/da6efd086c099b7fc949121166f0130c. [Center for Drug Evaluation, NMPA. Catalogue of accepted varieties[EB/OL]. 2024-9-24. https://www.cde.org.cn/main/xxgk/listpage/da6efd086c099b7fc949121166f0130c.]
Center for Drug Evaluation, NMPA. Catalogue of accepted varieties[EB/OL]. 2024-9-24. https://www.cde.org.cn/main/xxgk/listpage/da6efd086c099b7fc949121166f0130c.
|
[2] |
Seitzer KE, Seifert R, Kessel K, et al. Lutetium-177 Labelled PSMA Targeted Therapy in Advanced Prostate Cancer: Current Status and Future Perspectives[J]. Cancers (Basel), 2021, 13(15): 3715. doi: 10.3390/cancers13153715
|
[3] |
Parghane RV, Basu S. PSMA-targeted radioligand therapy in prostate cancer: current status and future prospects[J]. Expert Rev Anticancer Ther, 2023, 23(9): 959-975. doi: 10.1080/14737140.2023.2247562
|
[4] |
Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer[J]. N Engl J Med, 2021, 385(12): 1091-1103. doi: 10.1056/NEJMoa2107322
|
[5] |
Jones W, Griffiths K, Barata PC, et al. PSMA Theranostics: Review of the Current Status of PSMA-Targeted Imaging and Radioligand Therapy[J]. Cancers (Basel), 2020, 12(6): 1367. doi: 10.3390/cancers12061367
|
[6] |
Morris MJ, Castellano D, Herrmann K, et al. 177Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): a phase 3, randomised, controlled trial[J]. Lancet, 2024, 404(10459): 1227-1239. doi: 10.1016/S0140-6736(24)01653-2
|
[7] |
Cursano MC, Iuliani M, Casadei C, et al. Combination radium-223 therapies in patients with bone metastases from castration-resistant prostate cancer: A review[J]. Crit Rev Oncol Hematol, 2020, 146: 102864. doi: 10.1016/j.critrevonc.2020.102864
|
[8] |
Sathekge MM, Lawal IO, Bal C, et al. Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study[J]. Lancet Oncol, 2024, 25(2): 175-183. doi: 10.1016/S1470-2045(23)00638-1
|
[9] |
Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial[J]. Lancet, 2021, 397(10276): 797-804. doi: 10.1016/S0140-6736(21)00237-3
|
[10] |
Sartor AO, Tagawa ST, Saad F, et al. PSMAddition: A phase 3 trial to compare treatment with 177Lu-PSMA-617 plus standard of care (SOC) versus SOC alone in patients with metastatic hormone-sensitive prostate cancer[J]. J Clin Oncol, 2022, 40(6 suppl): TPS210.
|
[11] |
Rosar F, Burgard C, Rohloff LV, et al. 225 Ac-PSMA-617 Augmentation in High-Risk mCRPC Undergoing 177 Lu-PSMA-617 Radioligand Therapy: Pilot Experience From a Prospective Registry[J]. Clin Nucl Med, 2024, 49(7): 621-629. doi: 10.1097/RLU.0000000000005253
|
[12] |
Khreish F, Ebert N, Ries M, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience[J]. Eur J Nucl Med Mol Imaging, 2020, 47(3): 721-728. doi: 10.1007/s00259-019-04612-0
|
[13] |
Sathekge M, Bruchertseifer F, Vorster M, et al. mCRPC Patients Receiving 225Ac-PSMA-617 Therapy in the Post-Androgen Deprivation Therapy Setting: Response to Treatment and Survival Analysis[J]. J Nucl Med, 2022, 63(10): 1496-1502. doi: 10.2967/jnumed.121.263618
|
[14] |
Weller M, Albert NL, Galldiks N, et al. Targeted radionuclide therapy for gliomas: emerging clinical trial landscape[J]. Neuro Oncol, 2024: noae125.
|
[15] |
Kunikowska J, Charzyńska I, Kuliński R, et al. Tumor uptake in glioblastoma multiforme after Ⅳ injection of [177Lu]Lu-PSMA-617[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1605-1606. doi: 10.1007/s00259-020-04715-z
|
[16] |
Kumar A, Ballal S, Yadav MP, et al. 177Lu-/68Ga-PSMA Theranostics in Recurrent Glioblastoma Multiforme: Proof of Concept[J]. Clin Nucl Med, 2020, 45(12): e512-e513. doi: 10.1097/RLU.0000000000003142
|
[17] |
Man D, Wu J, Shen Z, et al. Prognosis of patients with neuroendocrine tumor: a SEER database analysis[J]. Cancer Manag Res, 2018, 10: 5629-5638. doi: 10.2147/CMAR.S174907
|
[18] |
Parham DM. Neuroectodermal and neuroendocrine tumors principally seen in children[J]. Am J Clin Pathol, 2001, (115 suppl): S113-S128.
|
[19] |
Sarvida ME, O’Dorisio MS. Neuroendocrine tumors in children and young adults: rare or not so rare[J]. Endocrinol Metab Clin North Am, 2011, 40(1): 65-80. doi: 10.1016/j.ecl.2010.12.007
|
[20] |
Dasari A, Shen C, Halperin D, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342. doi: 10.1001/jamaoncol.2017.0589
|
[21] |
Frilling A, Åkerström G, Falconi M, et al. Neuroendocrine tumor disease: an evolving landscape[J]. Endoc Related Cancer, 2012, 19(5): R163-R815. doi: 10.1530/ERC-12-0024
|
[22] |
Lawrence B, Gustafsson BI, Chan A, et al. The Epidemiology of Gastroenteropancreatic Neuroendocrine Tumors[J]. Endocrinol Metab Clin N Am, 2011, 40(1): 1-18,vii. doi: 10.1016/j.ecl.2010.12.005
|
[23] |
NETTER-P (NCT04711135). Study to Evaluate Safety and Dosimetry of Lutathera in Adolescent Patients With GEP-NETs and PPGLs[EB/OL]. [2024-04-23]. https://www.lacnets.org/clinical-trials-1/netter-p%3A-lutathera-in-adolescent-patients-(12-17)-with-gep-nets-and-ppgls.
|
[24] |
Merrell KW, Johnson DR, Steinert KO, et al. A Prospective, Phase Ⅱ Study of 177Lu-Dotatate in Patients with Surgery- and Radiation-Refractory Meningioma: Results of the WHO Grade Ⅱ/Ⅲ Cohort[J]. Int J Radiat Oncol Biol Phys, 2024, 120(2): S11-S12.
|
[25] |
Novartis Pharmaceuticals. A Dose Finding Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed Glioblastoma in Combination With Standard of Care and in Recurrent Glioblastoma as a Single Agent[Z]. 2024. https://clinicaltrials.gov/study/NCT05109728.
|
[26] |
Delpassand E, Tworowska I, Esfandiari R, et al. Phase Ⅰ dose-escalation study of AlphaMedix for targeted-alpha-emitter therapy of PRRT-naive neuroendocrine patients[J]. J Clin Oncol, 2021, 39(15 suppl): 4117.
|
[27] |
Advanced Accelerator Applications. [177Lu]-NeoB in Patients With Advanced Solid Tumors and With [68Ga]-NeoB Lesion Uptake (NeoRay)[Z]. 2024. https://clinicaltrials.gov/study/NCT03872778.
|
[28] |
Liu H, Hu Z, Yang X, et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F]FDG uptake in esophageal cancer[J]. Front Oncol, 2022, 12: 875081. doi: 10.3389/fonc.2022.875081
|
[29] |
Lin R, Lin Z, Chen Z, et al. [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of gastric cancer: comparison with [18F]FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2960-2971. doi: 10.1007/s00259-022-05799-5
|
[30] |
Pang Y, Zhao L, Luo Z, et al. Comparison of 68Ga-FAPI and 18F-FDG uptake in gastric, duodenal, and colorectal cancers[J]. Radiology, 2021, 298(2): 393-402. doi: 10.1148/radiol.2020203275
|
[31] |
Guo W, Pang Y, Yao L, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1604-1617. doi: 10.1007/s00259-020-05095-0
|
[32] |
Chen H, Pang Y, Li J, et al. Comparison of [68Ga]Ga-FAPI and [18F]FDG uptake in patients with gastric signet-ring-cell carcinoma: a multicenter retrospective study[J]. Eur Radiol, 2023, 33(2): 1329-1341.
|
[33] |
Zhang Z, Jia G, Pan G, et al. Comparison of the diagnostic efficacy of 68Ga-FAPI-04 PET/MR and 18F-FDG PET/CT in patients with pancreatic cancer[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2877-2888. doi: 10.1007/s00259-022-05729-5
|
[34] |
Qin C, Shao F, Gai Y, et al. 68Ga-DOTA-FAPI-04 PET/MR in the evaluation of gastric carcinomas: comparison with 18F-FDG PET/CT[J]. J Nucl Med, 2022, 63(1): 81-88. doi: 10.2967/jnumed.120.258467
|
[35] |
Zhao L, Niu B, Fang J, et al. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer[J]. J Nucl Med, 2022, 63(6): 862-868. doi: 10.2967/jnumed.121.263016
|
Tables(3)