Advanced Search
WU Yingchao, LIANG Yuqi, ZUO Qian, CHEN Qianjun. Role of Central Nervous System Circuits in Promotion of Breast Cancer Progression by Depression[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 25-30. DOI: 10.3971/j.issn.1000-8578.2025.24.0841
Citation: WU Yingchao, LIANG Yuqi, ZUO Qian, CHEN Qianjun. Role of Central Nervous System Circuits in Promotion of Breast Cancer Progression by Depression[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 25-30. DOI: 10.3971/j.issn.1000-8578.2025.24.0841

Role of Central Nervous System Circuits in Promotion of Breast Cancer Progression by Depression

Funding: National Natural Science Foundation of China (No. 81974571, 82274513, 82305234, 82474504); Natural Science Foundation of Guangdong Province of China (No. 2020A1515110760, 2023A1515011115); Planned Science Technology Project of Guangzhou (No. SL2023A03J01120, SL2023A04J00228); Guangdong Hospital of Traditional Chinese Medicine Special Research Project on Traditional Chinese Medicine Science and Technology (No. YN2022QN32); Project of Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome(No. YN2023ZH10); Autonomous Project of State Key Laboratory of Traditional Chinese Medicine Syndrome(No. QZ2023ZZ13)
More Information
  • Corresponding author:

    CHEN Qianjun, E-mail: cqj55@163.com

    ZUO Qian, E-mail: 827649822@qq.com

  • Received Date: August 29, 2024
  • Revised Date: November 06, 2024
  • Accepted Date: November 17, 2024
  • Available Online: November 25, 2024
  • With the development of neuroscience and oncology, the direct regulation effect of central nervous system circuits on tumors has been gradually revealed. Evidence indicates that the therapy targeting emotion-related encephalic regions may have great potential in blocking the promotion of breast cancer progression by depression. The underlying complex mechanisms involve the generation of depression and the regulation of tumors by central nervous system circuits. However, a systematic summary is lacking in this field. This article reviews the latest research progress of the central nervous system circuits and the generation of depression, the neural connection between the central nervous system and peripheral tumor, and the regulation of the tumor immune microenvironment by the sympathetic nervous system. It also systematically investigates the potential mechanism of the central nervous system circuit in the promotion of breast cancer progression by depression to establish new solutions for the comprehensive treatment of breast cancer.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. doi: 10.1016/j.jncc.2024.01.006
    [2]
    郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. [Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3): 221-231.] doi: 10.3760/cma.j.cn112152-20240119-00035

    Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3): 221-231. doi: 10.3760/cma.j.cn112152-20240119-00035
    [3]
    Tang M, Su Z, He Y, et al. Physical symptoms and anxiety and depression in older patients with advanced cancer in China: a network analysis[J]. BMC Geriatr, 2024, 24(1): 185. doi: 10.1186/s12877-024-04788-7
    [4]
    Cai Y, Zhaoxiong Y, Zhu W, et al. Association between sleep duration, depression and breast cancer in the United States: a national health and nutrition examination survey analysis 2009-2018[J]. Ann Med, 2024, 56(1): 2314235. doi: 10.1080/07853890.2024.2314235
    [5]
    Wang X, Wang N, Zhong L et al. Prognostic value of depression and anxiety on breast cancer recurrence and mortality: a systematic review and meta-analysis of 282, 203 patients[J]. Mol Psychiatry, 2020, 25(12): 3186-3197. doi: 10.1038/s41380-020-00865-6
    [6]
    井含光, 司徒红林, 朱华宇, 等. 林毅“六郁治乳”理论在乳腺病诊治中的应用[J]. 广州中医药大学学报, 2021, 38(8): 1714-1718. [Jing HG, Situ HL, Zhu HY, et al. Application of LIN Yi’s Six Kinds of Stagnancy Theory for Breast in the Treatment of Breast Diseases[J]. Guangzhou Zhong Yi Yao Da Xue Xue Bao, 2021, 38(8): 1714-1718.]

    Jing HG, Situ HL, Zhu HY, et al. Application of LIN Yi’s Six Kinds of Stagnancy Theory for Breast in the Treatment of Breast Diseases[J]. Guangzhou Zhong Yi Yao Da Xue Xue Bao, 2021, 38(8): 1714-1718.
    [7]
    Hong Y, Zhang L, Liu N et al. The Central Nervous Mechanism of Stress-Promoting Cancer Progression[J]. Int J Mol Sci, 2022, 23(20): 12653. doi: 10.3390/ijms232012653
    [8]
    Eckerling A, Ricon-Becker I, Sorski L, et al. Stress and cancer: mechanisms, significance and future directions[J]. Nat Rev Cancer, 2021, 21(12): 767-785. doi: 10.1038/s41568-021-00395-5
    [9]
    Cui B, Peng F, Lu J, et al. Cancer and stress: NextGen strategies[J]. Brain Behav Immun, 2021, 93: 368-383. doi: 10.1016/j.bbi.2020.11.005
    [10]
    Zhang L, Pan J, Chen W, et al. Chronic stress-induced immune dysregulation in cancer: implications for initiation, progression, metastasis, and treatment[J]. Am J Cancer Res, 2020, 10(5): 1294-1307.
    [11]
    Li H, Kawatake-Kuno A, Inaba H, et al. Discrete prefrontal neuronal circuits determine repeated stress-induced behavioral phenotypes in male mice[J]. Neuron, 2024, 112(5): 786-804. e8.
    [12]
    Rakotobe M, Fjerdingstad N, Ruiz-Reig N, et al. Central role of the habenulo-interpeduncular system in the neurodevelopmental basis of susceptibility and resilience to anxiety in mice[J]. Neurobiol Dis, 2024, 191: 106392. doi: 10.1016/j.nbd.2023.106392
    [13]
    Xiong SY, Wen HZ, Dai LM, et al. A brain-tumor neural circuit controls breast cancer progression in mice[J]. J Clin Invest, 2023, 133(24): e167725. doi: 10.1172/JCI167725
    [14]
    Kappelmann N, Lewis G, Dantzer R, et al. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions[J]. Mol Psychiatry, 2018, 23(2): 335-343. doi: 10.1038/mp.2016.167
    [15]
    Lach G, Schellekens H, Dinan TG, et al. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides[J]. Neurotherapeutics, 2018, 15(1): 36-59. doi: 10.1007/s13311-017-0585-0
    [16]
    Boku S, Nakagawa S, Toda H, et al. Neural basis of major depressive disorder: Beyond monoamine hypothesis[J]. Psychiatry Clin Neurosci, 2018, 72(1): 3-12. doi: 10.1111/pcn.12604
    [17]
    Krishnan V, Nestler EJ. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215): 894-902. doi: 10.1038/nature07455
    [18]
    Keiflin R, Janak PH. Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry[J]. Neuron, 2015, 88(2): 247-263. doi: 10.1016/j.neuron.2015.08.037
    [19]
    Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders[J]. Nat Rev Neurosci, 2013, 14(9): 609-625.
    [20]
    Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression[J]. Arch Gen Psychiatry, 2007, 64(3): 327-337. doi: 10.1001/archpsyc.64.3.327
    [21]
    Covington HR, Lobo MK, Maze I, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex[J]. J Neurosci, 2010, 30(48): 16082-16090. doi: 10.1523/JNEUROSCI.1731-10.2010
    [22]
    Mayberg HS. Targeted electrode-based modulation of neural circuits for depression[J]. J Clin Invest, 2009, 119(4): 717-725. doi: 10.1172/JCI38454
    [23]
    Teissier A, Le Magueresse C, Olusakin J, et al. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms[J]. Mol Psychiatry, 2020, 25(6): 1159-1174. doi: 10.1038/s41380-019-0493-2
    [24]
    Son H, Baek JH, Go BS, et al. Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex[J]. Neuropharmacology, 2018, 143: 143-152. doi: 10.1016/j.neuropharm.2018.09.040
    [25]
    Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions[J]. Mol Psychiatry, 2020, 25(11): 2742-2758. doi: 10.1038/s41380-020-0685-9
    [26]
    Warden MR, Selimbeyoglu A, Mirzabekov JJ, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge[J]. Nature, 2012, 492(7429): 428-432. doi: 10.1038/nature11617
    [27]
    Geddes SD, Assadzada S, Lemelin D, et al. Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids[J]. Proc Natl Acad Sci U S A, 2016, 113(19): 5429-5434. doi: 10.1073/pnas.1522754113
    [28]
    Srejic LR, Wood KM, Zeqja A, et al. Modulation of serotonin dynamics in the dorsal raphe nucleus via high frequency medial prefrontal cortex stimulation[J]. Neurobiol Dis, 2016, 94: 129-138. doi: 10.1016/j.nbd.2016.06.009
    [29]
    Wise RA. Dopamine, learning and motivation[J]. Nat Rev Neurosci, 2004, 5(6): 483-494. doi: 10.1038/nrn1406
    [30]
    Zhang H, Chaudhury D, Nectow AR, et al. alpha(1)- and beta(3)-Adrenergic Receptor-Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice[J]. Biol Psychiatry, 2019, 85(3): 226-236. doi: 10.1016/j.biopsych.2018.08.020
    [31]
    He F, Zhang P, Zhang Q, et al. Dopaminergic Projection from Ventral Tegmental Area to Substantia Nigra Pars Reticulata Mediates Chronic Social Defeat Stress-Induced Hypolocomotion[J]. Mol Neurobiol, 2021, 58(11): 5635-5648. doi: 10.1007/s12035-021-02522-7
    [32]
    Root DH, Melendez RI, Zaborszky L, et al. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors[J]. Prog Neurobiol, 2015, 130: 29-70. doi: 10.1016/j.pneurobio.2015.03.005
    [33]
    Neumeister A, Wood S, Bonne O, et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects[J]. Biol Psychiatry, 2005, 57(8): 935-937. doi: 10.1016/j.biopsych.2005.01.016
    [34]
    Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures?[J]. Neuron, 2010, 65(1): 7-19. doi: 10.1016/j.neuron.2009.11.031
    [35]
    Zhang TR, Larosa A, Di Raddo ME, et al. Negative Memory Engrams in the Hippocampus Enhance the Susceptibility to Chronic Social Defeat Stress[J]. J Neurosci, 2019, 39(38): 7576-7590. doi: 10.1523/JNEUROSCI.1958-18.2019
    [36]
    Lin S, Du Y, Xia Y, et al. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms[J]. Front Psychiatry, 2022, 13: 950910. doi: 10.3389/fpsyt.2022.950910
    [37]
    Shi DD, Guo JA, Hoffman HI, et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities[J]. Lancet Oncol, 2022, 23(2): e62-e74. doi: 10.1016/S1470-2045(21)00596-9
    [38]
    Monje M, Borniger JC, D'Silva NJ, et al. Roadmap for the Emerging Field of Cancer Neuroscience[J]. Cell, 2020, 181(2): 219-222. doi: 10.1016/j.cell.2020.03.034
    [39]
    Zhao CM, Hayakawa Y, Kodama Y, et al. Denervation suppresses gastric tumorigenesis[J]. Sci Transl Med, 2014, 6(250): 250ra115.
    [40]
    Szpunar MJ, Burke KA, Dawes RP, et al. The antidepressant desipramine and alpha2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure[J]. Cancer Prev Res (Phila), 2013, 6(12): 1262-1272. doi: 10.1158/1940-6207.CAPR-13-0079
    [41]
    Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013, 341(6142): 1236361. doi: 10.1126/science.1236361
    [42]
    Kamiya A, Hayama Y, Kato S, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression[J]. Nat Neurosci, 2019, 22(8): 1289-1305. doi: 10.1038/s41593-019-0430-3
    [43]
    Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety[J]. Nature, 2011, 471(7338): 358-362. doi: 10.1038/nature09820
    [44]
    Muscatell KA, Eisenberger NI, Dutcher JM, et al. Links between inflammation, amygdala reactivity, and social support in breast cancer survivors[J]. Brain Behav Immun, 2016, 53: 34-38. doi: 10.1016/j.bbi.2015.09.008
    [45]
    Yoshikawa E, Matsuoka Y, Yamasue H, et al. Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis[J]. Biol Psychiatry, 2006, 59(8): 707-712. doi: 10.1016/j.biopsych.2005.08.018
    [46]
    Paretkar T, Dimitrov E. The Central Amygdala Corticotropin-releasing hormone (CRH) Neurons Modulation of Anxiety-like Behavior and Hippocampus-dependent Memory in Mice[J]. Neuroscience, 2018, 390: 187-197. doi: 10.1016/j.neuroscience.2018.08.019
    [47]
    Flandreau EI, Bourke CH, Ressler KJ, et al. Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala[J]. Psychoneuroendocrinology, 2013, 38(8): 1349-1361. doi: 10.1016/j.psyneuen.2012.11.020
    [48]
    Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response![J]. Crit Care, 2013, 17(2): 305. doi: 10.1186/cc12514
    [49]
    Xiang HB, Liu C, Liu TT, et al. Central circuits regulating the sympathetic outflow to lumbar muscles in spinally transected mice by retrograde transsynaptic transport[J]. Int J Clin Exp Pathol, 2014, 7(6): 2987-2997.
    [50]
    Horvath K, Juhasz B, Kuti D, et al. Recruitment of Corticotropin-Releasing Hormone (CRH) Neurons in Categorically Distinct Stress Reactions in the Mouse Brain[J]. Int J Mol Sci, 2023, 24(14): 11736. doi: 10.3390/ijms241411736
    [51]
    Maruyama NO, Mitchell NC, Truong TT, et al. Activation of the hypothalamic paraventricular nucleus by acute intermittent hypoxia: Implications for sympathetic long-term facilitation neuroplasticity[J]. Exp Neurol, 2019, 314: 1-8. doi: 10.1016/j.expneurol.2018.12.011
    [52]
    Chandrasekar G, Lauter G, Hauptmann G. Distribution of corticotropin-releasing hormone in the developing zebrafish brain[J]. J Comp Neurol, 2007, 505(4): 337-351. doi: 10.1002/cne.21496
    [53]
    Dimitrov EL, DeJoseph MR, Brownfield MS, et al. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity[J]. Endocrinology, 2007, 148(8): 3666-3673. doi: 10.1210/en.2006-1730
    [54]
    Vega-Rivera NM, Estrada-Camarena E, Azpilcueta-Morales G, et al. Chronic Variable Stress and Cafeteria Diet Combination Exacerbate Microglia and c-fos Activation but Not Experimental Anxiety or Depression in a Menopause Model[J]. Int J Mol Sci, 2024, 25(3): 1455. doi: 10.3390/ijms25031455
    [55]
    Jiang Y, Hu Y, Yang Y, et al. Tong-Xie-Yao-Fang promotes dendritic cells maturation and retards tumor growth in colorectal cancer mice with chronic restraint stress[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117069.
    [56]
    Wang J, Sun L, You J, et al. Role and mechanism of PVN-sympathetic-adipose circuit in depression and insulin resistance induced by chronic stress[J]. EMBO Rep, 2023, 24(12): e57176. doi: 10.15252/embr.202357176
    [57]
    Ruyle BC, Lima-Silveira L, Martinez D, et al. Paraventricular nucleus projections to the nucleus tractus solitarii are essential for full expression of hypoxia-induced peripheral chemoreflex responses[J]. J Physiol, 2023, 601(19): 4309-4336. doi: 10.1113/JP284907
    [58]
    Zhou J, Zhang B, Zhou X, et al. Electroacupuncture pretreatment mediates sympathetic nerves to alleviate myocardial ischemia-reperfusion injury via CRH neurons in the paraventricular nucleus of the hypothalamus[J]. Chin Med, 2024, 19(1): 43. doi: 10.1186/s13020-024-00916-y
    [59]
    Yoshida S, Hamada Y, Narita M, et al. Elucidation of the mechanisms underlying tumor aggravation by the activation of stress-related neurons in the paraventricular nucleus of the hypothalamus[J]. Mol Brain, 2023, 16(1): 18. doi: 10.1186/s13041-023-01006-0
    [60]
    Ji NN, Li ZY, Cao S, et al. Neuroinflammation in the paraventricular nucleus of the hypothalamus precipitates visceral pain induced by pancreatic cancer in mice[J]. J Gastrointest Oncol, 2024, 15(1): 468-477. doi: 10.21037/jgo-24-42
    [61]
    Iqbal NJ, Schwartz GJ, Zhao H, et al. Cyclin-dependent kinase 4/6 inhibitors require an arcuate-to-paraventricular hypothalamus melanocortin circuit to treat diet-induced obesity[J]. Am J Physiol Endocrinol Metab, 2021, 320(3): E467-E474. doi: 10.1152/ajpendo.00386.2020
    [62]
    Ye Y, Xie T, Amit M. Targeting the Nerve-Cancer Circuit[J]. Cancer Res, 2023, 83(15): 2445-2447. doi: 10.1158/0008-5472.CAN-23-1754
    [63]
    Hu J, Chen W, Shen L, et al. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(6): 188828. doi: 10.1016/j.bbcan.2022.188828
    [64]
    Xu Y, Yan J, Tao Y, et al. Pituitary hormone alpha-MSH promotes tumor-induced myelopoiesis and immunosuppression[J]. Science, 2022, 377(6610): 1085-1091. doi: 10.1126/science.abj2674
    [65]
    Zhang X, Lei B, Yuan Y, et al. Brain control of humoral immune responses amenable to behavioural modulation[J]. Nature, 2020, 581(7807): 204-208. doi: 10.1038/s41586-020-2235-7
    [66]
    Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007)[J]. Brain Behav Immun, 2007, 21(6): 736-745. doi: 10.1016/j.bbi.2007.03.008
    [67]
    Goldfarb Y, Sorski L, Benish M, et al. Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses[J]. Ann Surg, 2011, 253(4): 798-810. doi: 10.1097/SLA.0b013e318211d7b5
    [68]
    Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer[J]. Cancer Res, 2010, 70(18): 7042-7052. doi: 10.1158/0008-5472.CAN-10-0522
    [69]
    Qin JF, Jin FJ, Li N, et al. Adrenergic receptor beta2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment[J]. BMB Rep, 2015, 48(5): 295-300. doi: 10.5483/BMBRep.2015.48.5.008
    [70]
    Ben-Eliyahu S, Shakhar G, Page GG, et al. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors[J]. Neuroimmunomodulation, 2000, 8(3): 154-164. doi: 10.1159/000054276
    [71]
    Mohammadpour H, O'Neil R, Qiu J, et al. Blockade of Host beta2-Adrenergic Receptor Enhances Graft-versus-Tumor Effect through Modulating APCs[J]. J Immunol, 2018, 200(7): 2479-2488. doi: 10.4049/jimmunol.1701752
    [72]
    Andersen BL, Farrar WB, Golden-Kreutz D, et al. Stress and immune responses after surgical treatment for regional breast cancer[J]. J Natl Cancer Inst, 1998, 90(1): 30-36. doi: 10.1093/jnci/90.1.30
    [73]
    Silva D, Quintas C, Goncalves J, et al. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J]. J Cell Physiol, 2022, 237(4): 2107-2127. doi: 10.1002/jcp.30707
    [74]
    Mohammadpour H, MacDonald CR, Qiao G, et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells[J]. J Clin Invest, 2019, 129(12): 5537-5552. doi: 10.1172/JCI129502
    [75]
    Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, et al. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth[J]. Oncotarget, 2015, 6(6): 4266-4273. doi: 10.18632/oncotarget.2887
    [76]
    Setordzi P, Chang X, Liu Z, et al. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy[J]. Eur J Pharmacol, 2021, 895: 173867. doi: 10.1016/j.ejphar.2021.173867
    [77]
    Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy[J]. Cell Res, 2017, 27(1): 109-118. doi: 10.1038/cr.2016.151
    [78]
    Campbell JP, Karolak MR, Ma Y, et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice[J]. PLoS Biol, 2012, 10(7): e1001363. doi: 10.1371/journal.pbio.1001363

Catalog

    Article views (617) PDF downloads (372) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return