Advanced Search
MAO Xuebao, WANG Xiuhong. LncRNA PCAT-1 Reduces Sensitivity of Cervical Carcinoma Cells to Cisplatin by Regulating STAT3 and PTEN Expression[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 833-838. DOI: 10.3971/j.issn.1000-8578.2021.21.0148
Citation: MAO Xuebao, WANG Xiuhong. LncRNA PCAT-1 Reduces Sensitivity of Cervical Carcinoma Cells to Cisplatin by Regulating STAT3 and PTEN Expression[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 833-838. DOI: 10.3971/j.issn.1000-8578.2021.21.0148

LncRNA PCAT-1 Reduces Sensitivity of Cervical Carcinoma Cells to Cisplatin by Regulating STAT3 and PTEN Expression

More Information
  • Received Date: February 04, 2021
  • Revised Date: July 11, 2021
  • Available Online: January 12, 2024
  • Objective 

    To investigate the role and regulatory mechanism of lncRNAs PCAT-1 in the sensitivity of cervical cancer cells to DDP.

    Methods 

    The expressions of PCAT-1 in human cervical cancer cell lines (HeLa and SiHa) and DDP-resistant cell lines (HeLa/DDP and SiHa/DDP) were analyzed by real-time PCR. After PCAT-1 silencing and overexpression in HeLa/DDP and SiHa/DDP cells, CCK-8 and flow cytometry were used to detect cell viability ability and cell cycle, respectively. Western blot was used to detect the protein expression of STAT3 and PTEN.

    Results 

    The DDP resistance index of HeLa/DDP cells to HeLa cells was 4.49, while that of SiHa/DDP cells to SiHa cells was 6.87. The expression levels of PCAT-1 in HeLa/DDP and SiHa/DDP cells were significantly higher than those in HeLa and SiHa cells, respectively (P < 0.05). The overexpression of PCAT-1 reduced the sensitivity of HeLa/DDP and SiHa/DDP cells to DDP, enhanced the proportion of S phase in cell cycle, and decreased the proportion of G0-G1 and G2-M phases (P < 0.05). The silencing of PCAT-1 increased the sensitivity of HeLa/DDP and SiHa/DDP cells to DDP, decreased the proportion of S phase in the cell cycle, and enhanced the proportion of G0-G1 and G2-M phase (P < 0.05). Overexpression of PCAT-1 promoted STAT3 protein expression but inhibited PTEN protein expression in HeLa/DDP and SiHa/DDP cells (P < 0.05). The silencing of PCAT-1 inhibited STAT3 protein expression but promoted PTEN protein expression in HeLa/DDP and SiHa/DDP cells (P < 0.05).

    Conclusion 

    PCAT-1 is upregulated in HeLa/DDP and SiHa/DDP cells. PCAT-1 reduces the sensitivity of HeLa/DDP and SiHa/DDP cells to DDP by upregulating the expression of STAT3 and downregulating the expression of PTEN.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Brisson M, Drolet M. Global elimination of cervical cancer as a public health problem[J]. Lancet Oncol, 2019, 20(3): 319-321. doi: 10.1016/S1470-2045(19)30072-5
    [2]
    Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. doi: 10.1016/S0140-6736(18)32470-X
    [3]
    Zhu H, Luo H, Zhang W, et al. Molecular mechanisms of cisplatin resistance in cervical cancer[J]. Drug Des Devel Ther, 2016, 10: 1885-1895.
    [4]
    Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression[J]. Nat Biotechnol, 2011, 29(8): 742-749. doi: 10.1038/nbt.1914
    [5]
    Sur S, Nakanishi H, Steele R, et al. Depletion of PCAT-1 in head and neck cancer cells inhibits tumor growth and induces apoptosis by modulating c-Myc-AKT1-p38 MAPK signalling pathways[J]. BMC Cancer, 2019, 19(1): 354. doi: 10.1186/s12885-019-5562-z
    [6]
    Ma TT, Zhou LQ, Xia JH, et al. LncRNA PCAT-1 regulates the proliferation, metastasis and invasion of cervical cancer cells[J]. Eur Rev Med Pharmacol Sci, 2018, 22(7): 1907-1913. http://www.europeanreview.org/wp/wp-content/uploads/1907-1913.pdf
    [7]
    Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm[J]. Cancer Res, 2017, 77(15): 3965-3981. doi: 10.1158/0008-5472.CAN-16-2634
    [8]
    Li L, Gu M, You B, et al. Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma[J]. Cancer Sci, 2016, 107(9): 1215-1222. doi: 10.1111/cas.12989
    [9]
    Bester AC, Lee JD, Chavez A, et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance[J]. Cell, 2018, 173(3): 649-664. e20. doi: 10.1016/j.cell.2018.03.052
    [10]
    Fang S, Gao H, Tong Y, et al. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells[J]. Lab Invest, 2016, 96(1): 60-68. doi: 10.1038/labinvest.2015.123
    [11]
    Long X, Song K, Hu H, et al. Long non-coding RNA GAS5 inhibits DDP-resistance and tumor progression of epithelial ovarian cancer via GAS5-E2F4-PARP1-MAPK axis[J]. J Exp Clin Cancer Res, 2019, 38(1): 345. doi: 10.1186/s13046-019-1329-2
    [12]
    Li M, Zhang YY, Shang J, et al. LncRNA SNHG5 promotes cisplatin resistance in gastric cancer via inhibiting cell apoptosis[J]. Eur Rev Med Pharmacol Sci, 2019, 23(10): 4185-4191. http://www.ncbi.nlm.nih.gov/pubmed/31173289
    [13]
    Wen Q, Liu Y, Lyu H, et al. Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer[J]. Int J Gynecol Cancer, 2017, 27(6): 1096-1108. doi: 10.1097/IGC.0000000000001028
    [14]
    Feng Y, Zou W, Hu C, et al. Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin[J]. Arch Biochem Biophys, 2017, 623-624: 20-30. doi: 10.1016/j.abb.2017.05.001
    [15]
    Zhen Q, Gao LN, Wang RF, et al. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin[J]. Cell Biochem Funct, 2018, 36(1): 27-33. doi: 10.1002/cbf.3314
    [16]
    Qiao L, Liu X, Tang Y, et al. Knockdown of long non-coding RNA prostate cancer-associated ncRNA transcript 1 inhibits multidrug resistance and c-Myc-dependent aggressiveness in colorectal cancer Caco-2 and HT-29 cells[J]. Mol Cell Biochem, 2018, 441(1-2): 99-108. doi: 10.1007/s11010-017-3177-8
    [17]
    Shen X, Shen P, Yang Q, et al. Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways[J]. J Cancer, 2019, 10(26): 6502-6510. doi: 10.7150/jca.35098
    [18]
    Liu K, Ren T, Huang Y, et al. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma[J]. Cell Death Dis, 2017, 8(8): e3015. doi: 10.1038/cddis.2017.422
    [19]
    Huang LL, Rao W. SiRNA interfering STAT3 enhances DDP sensitivity in cervical cancer cells[J]. Eur Rev Med Pharmacol Sci, 2018, 22(13): 4098-4106. http://www.europeanreview.org/wp/wp-content/uploads/4098-4106.pdf
    [20]
    Salmena L. PTEN: History of a tumor suppressor[J]. Methods Mol Biol, 2016, 1388: 3-11. http://www.onacademic.com/detail/journal_1000038443200510_650b.html
    [21]
    Zuo Q, Liu J, Huang L, et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma[J]. Oncogene, 2018, 37(24): 3275-3289. doi: 10.1038/s41388-018-0205-4
    [22]
    Du G, Cao D, Meng L. MiR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells[J]. Mol Med Rep, 2017, 15(5): 2713-2719. doi: 10.3892/mmr.2017.6340
  • Related Articles

    [1]SUN Wenjia, YUE Junqiu, WANG Manxiang. Clinicopathological Characteristics and Therapeutic Effect of Patients with Non-small Cell Lung Cancer and Uncommon EGFR Mutations[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1221-1226. DOI: 10.3971/j.issn.1000-8578.2023.23.0431
    [2]CAO Xinhua, HAN Lifei, LYU Jianxin, HU Haolin, ZHANG Ya'nan. Association Between Family History of Malignant Neoplasms and Clinicopathological Features of Breast Cancer Patients[J]. Cancer Research on Prevention and Treatment, 2020, 47(10): 752-755. DOI: 10.3971/j.issn.1000-8578.2020.20.0027
    [3]RAO Xionghui, LUO Hongliang, HUANG Jun, ZHU Zhengming. Prognostic and Clinicopathological Significance of PD-L1 Expression for Colorectal Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 1013-1021. DOI: 10.3971/j.issn.1000-8578.2019.19.0363
    [4]SONG Jinling, LI Zhongwu, WEI Maomao, ZHOU Ni'na, YANG Zhi, WANG Xuejuan. Relation Between Metabolic Parameters of 18F-FDG PET/CT and Clinicopathological Features of Colorectal Cancer Patients[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 1006-1012. DOI: 10.3971/j.issn.1000-8578.2019.19.0665
    [5]YANG Hanjie, LIU Geliang, LIU Bo. Correlation of FoxO3 Gene with Clinicopathological Features and Prognosis of Bladder Cancer Patients[J]. Cancer Research on Prevention and Treatment, 2019, 46(1): 58-62. DOI: 10.3971/j.issn.1000-8578.2019.18.0806
    [6]HU Ming, HUANG Xiaohong, ZUO Weiwei, ZHAO Jing. Clinicopathological and Prognostic Value of Circulating Tumor Cells in Peripheral Blood in Head and Neck Cancer Patients:A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2018, 45(11): 883-889. DOI: 10.3971/j.issn.1000-8578.2018.18.0407
    [7]XU Haitao, ZHANG Lianguo, LIU Jianwei, LIU Hongjian, ZHANG Qingguang. Relationship of Macrophage Migration Inhibitory Factor Expression with Clinicopathologic Features and Prognosis of Cardiac Carcinoma Patients[J]. Cancer Research on Prevention and Treatment, 2016, 43(9): 779-782. DOI: 10.3971/j.issn.1000-8578.2016.09.010
    [8]AN Songlin, RONG Weiqi, WANG Liming, WU Fan, FENG Li, TIAN Fei, WU Jianxiong. Clinicopathologic Features and Surgical Treatment of Abdominal Inflammatory Myofibroblastic Tumor[J]. Cancer Research on Prevention and Treatment, 2016, 43(5): 396-399. DOI: 10.3971/j.issn.1000-8578.2016.05.016
    [9]HAN Xiaona, SUN Zhenqiang, TANG Yong, WANG Haijiang, QU Yanli, TANG Xushan. Relationship Between Preoperative Fibrinogen Level and Clinicopathological Characteristics of Colon Cancer[J]. Cancer Research on Prevention and Treatment, 2014, 41(12): 1326-1329. DOI: 10.3971/j.issn.1000-8578.2014.12.016
    [10]FU Wen-rong, ZHANG Qin, CHENG Zheng-jiang. Correlation between survivin Expression and Clinicopathological Factors in Colorectal Cancers[J]. Cancer Research on Prevention and Treatment, 2008, 35(10): 719-722. DOI: 10.3971/j.issn.1000-8578.2866
  • Cited by

    Periodical cited type(2)

    1. 杨帆,王浓燕,方蒙,章莹姣,胡海燕,方鹏. 基于m5C修饰相关基因的肺腺癌预后模型的建立与验证. 肿瘤防治研究. 2025(03): 208-216 . 本站查看
    2. 曹祥辉,曹佳庆,杜新华. 基于TCGA数据库构建胃癌免疫相关基因的预后风险模型. 黑龙江中医药. 2023(01): 106-108 .

    Other cited types(1)

Catalog

    Figures(6)

    Article views (1262) PDF downloads (266) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return