Advanced Search
YU Jie, YANG Feng, DENG Jian, HU Linwang. Knockdown of DCLK1 Inhibits Proliferation, Migration and Invasion of Glioma Cells[J]. Cancer Research on Prevention and Treatment, 2020, 47(9): 655-659. DOI: 10.3971/j.issn.1000-8578.2020.20.0127
Citation: YU Jie, YANG Feng, DENG Jian, HU Linwang. Knockdown of DCLK1 Inhibits Proliferation, Migration and Invasion of Glioma Cells[J]. Cancer Research on Prevention and Treatment, 2020, 47(9): 655-659. DOI: 10.3971/j.issn.1000-8578.2020.20.0127

Knockdown of DCLK1 Inhibits Proliferation, Migration and Invasion of Glioma Cells

  • Objective To investigate the effects of DCLK1 on the proliferation, migration and invasion of glioma cells and their mechanisms.
    Methods The mRNA and protein expression of DCLK1 in glioma tissues and glioma cell lines U87 and A172 were detected by RT-qPCR, immunohistochemical staining and Western blot. sh-DCLK1 and the corresponding negative control (sh-Con) were transfected into glioma cell lines U87 and A172 by Lipofectamine 2000 to silence DCLK1 expression. The effects of DCLK1 knockdown on the proliferation, migration and invasion of glioma cells were analyzed by MTT assay and Transwell assay. The effects of DCLK1 knockdown on the expression of TGF-β/Smads signaling pathway-related proteins TGF-β1, p-Smad2 and p-Smad7 in glioma cells were detected by Western blot. U87 cells transfected with sh-DCLK1 or sh-Con were injected into the subcutaneous neck of BALB/c nude mice, the tumor volume and weight were measured.
    Results Compared with normal adjacent tissues and normal glial cells, the mRNA and protein expression levels of DCLK1 were significantly increased in glioma tissues and cells (P < 0.001). Compared with sh-Con group, the proliferation, migration and invasion abilities, and the expressions of TGF-β1, p-Smad2 and p-Smad7 proteins of glioma cells in sh-DCLK1 group were significantly decreased (P < 0.01; P < 0.001); in addition, tumor volume and weight of sh-DCLK1 group were significantly reduced in vivo (P < 0.001).
    Conclusion DCLK1 knockdown could inhibit the proliferation, migration and invasion of glioma cells, which may be related to the inhibition of TGF-β/Smads signal activity.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return