Citation: | YANG Haixia, MI Jianqiang, LIANG Jun, SHAO Qiuju, QI Yuhong, WANG Qiming, CHANG Hao, LI Enxiao. Role and Mechanism of miR-1269a on Targeted Regulation of HOXD10 in Invasion of Cholangiocarcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2018, 45(11): 894-899. DOI: 10.3971/j.issn.1000-8578.2018.18.0175 |
To explore the possible mechanism of microRNA-1269a(miR-1269a) on the targeted regulation of HOXD10 in the invasion of human cholangiocarcinoma (CCC) cells.
We detected six miRNAs levels in human CCC samples and cells for screening miR-1269a as the research object.miR-1269a mimic and inhibitor were transfected into four CCC cells by Lipofectamine liposome respectively.The expressions of HOXD10 mRNA and protein were detected by real-time quantitative PCR (qPCR) and Western blot.The effect of miR-1269a on the invasion of CCC cells was observed.Double luciferase reporter assay was applied to verify the targeting relationship between miR-1269a and HOXD10.
miR-1269a expression was significantly upregulated in CCC tissues, compared with adjacent normal tissues (P=0.0023).The mRNA and protein levels of HOXD10 in miR-1269a mimic transfection group were lower than those in control group (Mz-CHA-1:P=0.0025;RBE:P=0.0038).miR-1269a mimic significantly elevated the invasion capacity of CCC cells (Mz-CHA-1:P=0.004;RBE:P=0.004), while miR-1269a inhibitor remarkably inhibited the invasion (QBC939:P=0.16;HCCC9810:P=0.13).Double luciferase reporter gene test showed that miR-1269a could significantly inhibit the luciferase activity of wild-type HOXD10-3'UTR, but had no effect on the luciferase activity of mutant plasmid transfected cells.
miR-1269a may regulate the invasion of CCC cells by targeting HOXD10, and could be used as an effective target for the molecular therapy of CCC.
[1] |
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF.Pathobiology of biliary epithelia[J].Biochim Biophys Acta, 2018, 1864(4 Pt B):1220-31. doi: 10.1016-S0016-5085(97)70244-0/
|
[2] |
Razumilava N, Gores GJ.Cholangiocarcinoma[J].Lancet, 2014, 383(9935):2168-79. doi: 10.1016/S0140-6736(13)61903-0
|
[3] |
Yang H, Zhou J, Mi J, et al.HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma[J].Oncol Rep, 2015, 34(4):1681-91. doi: 10.3892/or.2015.4194
|
[4] |
Ou Y, Zhang Q, Tang Y, et al.DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer[J].Oncol Rep, 2018, 39(3):993-1002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84d31284a5e6c44ea1daf388ace92f53
|
[5] |
Zhang Y, Yang P, Sun T, et al.miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis[J].Nat Cell Biol, 2013, 15(3):284-94. doi: 10.1038/ncb2690
|
[6] |
Olaizola P, Lee-Law PY, Arbelaiz A, et al.MicroRNAs and extracellular vesicles in cholangiopathies[J].Biochim Biophys Acta, 2018, 1864(4 Pt B):1293-307. https://linkinghub.elsevier.com/retrieve/pii/S0925443917302247
|
[7] |
Ma L, Teruya-Feldstein J, Weinberg RA.Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J].Nature, 2007, 449(7163):682-8. doi: 10.1038/nature06174
|
[8] |
Li Q, Ding C, Chen C, et al.miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma[J].J Gastroenterol Hepatol, 2014, 29(4):835-42. doi: 10.1111/jgh.2014.29.issue-4
|
[9] |
Bu P, Wang L, Chen KY, et al.miR-1269 promotes metastasis and forms a positive feedback loop with TGF-beta[J].Nat Commun, 2015, 6:6879. doi: 10.1038/ncomms7879
|
[10] |
Hu X, Chen D, Cui Y, et al.Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10[J].Sci Rep, 2013, 3:3423. doi: 10.1038/srep03423
|
[11] |
Yang H, Liang J, Zhou J, et al.Knockdown of RHOC by shRNA suppresses invasion and migration of cholangiocellular carcinoma cells via inhibition of MMP2, MMP3, MMP9 and epithelial-mesenchymal transition[J].Mol Med Rep, 2016, 13(6):5255-61. doi: 10.3892/mmr.2016.5170
|
[12] |
Yang H, Lu X, Liu Z, et al.FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells[J].Oncotarget, 2015, 6(8):6310-25. http://pubmedcentralcanada.ca/pmcc/articles/PMC4467439/
|
[13] |
Huang M, Su L, Yang L, et al.Effect of exogenous TGF-beta1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway[J].Chem Biol Interact, 2017, 269:25-32. doi: 10.1016/j.cbi.2017.03.010
|
[14] |
Ko DY, Shin JM, Um JY, et al.Rapamycin inhibits transforming growth factor beta 1 induced myofibroblast differentiation via the phosphorylated-phosphatidylinositol 3-kinase mammalian target of rapamycin signal pathways in nasal polyp-derived fibroblasts[J].Am J Rhinol Allergy, 2016, 30(6):211-7. doi: 10.2500/ajra.2016.30.4389
|
[15] |
Luo D, Hu S, Tang C, et al.Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells[J].Cell Biochem Funct, 2018, 36(2):88-94. doi: 10.1002/cbf.v36.2
|
[16] |
Zhong W, Tong Y, Li Y, et al.Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-κB signaling by paracrine CCL5[J].Oncotarget, 2017, 8(43):73693-704 http://pubmedcentralcanada.ca/pmcc/articles/PMC5650292/
|
[17] |
Patman G.Liver cancer:TGF-β and cholangiocarcinoma[J].Nat Rev Gastroenterol Hepatol, 2016, 13(1):2-3. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225747915/
|
[18] |
Wang H, Li C, Jian Z, et al.TGF-β1 Reduces miR-29a Expression to Promote Tumorigenicity and Metastasis of Cholangiocarcinoma by Targeting HDAC4[J].PLoS One, 2015, 10(10):e0136703. doi: 10.1371/journal.pone.0136703
|
[19] |
Chen Y, Ma L, He Q, et al.TGF-β1 expression is associated with invasion and metastasis of intrahepatic cholangiocarcinoma[J].Biol Res, 2015, 48:26. doi: 10.1186/s40659-015-0016-9
|
[1] | SHAN Baoen. Prospect of Tumor Treatment in the Post-PD-1/PD-L1 Inhibitor Era[J]. Cancer Research on Prevention and Treatment, 2023, 50(9): 833-841. DOI: 10.3971/j.issn.1000-8578.2023.22.1423 |
[2] | QIAO Shishi, KONG Tiandong, YU Dan, YANG Zhen, PAN Yanfeng, ZHAO Lingdi. A Real-world Study of Anti-PD-1 Antibody Combination Therapy in Advanced Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(3): 293-297. DOI: 10.3971/j.issn.1000-8578.2023.22.0852 |
[3] | YAN Guangning, YU Ling, LAI Xuwen, YE Danli, WANG Wei, WANG Zhuocai. Correlation Between PD-1/CTLA-4 Expressions with C linicopathological Features and Prognosis of Osteosarcoma Patients[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 63-68. DOI: 10.3971/j.issn.1000-8578.2023.22.0483 |
[4] | QI Lin, ZHANG Zhao, WANG Suyun, LIU Guimin, WANG Rui, FU Jianzhu, CHENG Zhiyong. Effect of Rapamycin on Exosomes and PD-1/PD-L1 in Human Erythroleukemia HEL Cells[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1021-1027. DOI: 10.3971/j.issn.1000-8578.2022.22.0188 |
[5] | CHANG Jinyi, WANG Wei, CAI Haifeng. Research Progress of PD-1/PD-L1 Inhibitor Combined with Trastuzumab in HER2-positive Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 965-969. DOI: 10.3971/j.issn.1000-8578.2022.21.1462 |
[6] | LAI Yanliang, GENG Yan, YANG Bingquan. Endocrine Disorders Induced by PD-1/PD-L1 Inhibitor and Related Treatment[J]. Cancer Research on Prevention and Treatment, 2021, 48(11): 1035-1040. DOI: 10.3971/j.issn.1000-8578.2021.21.0365 |
[7] | YU Lin, LI Guangping, ZHOU Changyu, FU Huaying. Research Progress on Cardiotoxicity of PD-1/PD-L1 Immune Checkpoint Inhibitors[J]. Cancer Research on Prevention and Treatment, 2021, 48(8): 794-798. DOI: 10.3971/j.issn.1000-8578.2021.20.1449 |
[8] | MA Yinjuan, YANG Xiaying, WANG Ying, WANG Xuan, PAN Yaozhu. Research Progress of PD-1/PD-L1/2 Pathway in Multiple Myeloma[J]. Cancer Research on Prevention and Treatment, 2021, 48(6): 647-651. DOI: 10.3971/j.issn.1000-8578.2021.21.0108 |
[9] | WANG Yufeng, YAO Nan, WANG Jun, MIN Guangtao. Prognostic Role of PD-1 and PD-L1 Expression in Gastric Cancer Patients: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2020, 47(5): 346-352. DOI: 10.3971/j.issn.1000-8578.2020.19.0950 |
[10] | ZOU Hanhui, Li Tao. Research Progress of PD-1/PD-L1 Checkpoint Inhibitors in (Neo) Adjuvant Therapy for Malignant Melanoma[J]. Cancer Research on Prevention and Treatment, 2020, 47(2): 141-146. DOI: 10.3971/j.issn.1000-8578.2020.19.0945 |