Advanced Search
WEI Ning, LIN Ruijiang, MA Minjie, CHEN Chang, HAN Biao. Relation Between Imaging Microfeatures of Artificial Intelligence-assisted Diagnosis System and Prognosis of Lung Adenocarcinomas Presented as Ground-glass Nodules[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 877-882. DOI: 10.3971/j.issn.1000-8578.2021.21.0255
Citation: WEI Ning, LIN Ruijiang, MA Minjie, CHEN Chang, HAN Biao. Relation Between Imaging Microfeatures of Artificial Intelligence-assisted Diagnosis System and Prognosis of Lung Adenocarcinomas Presented as Ground-glass Nodules[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 877-882. DOI: 10.3971/j.issn.1000-8578.2021.21.0255

Relation Between Imaging Microfeatures of Artificial Intelligence-assisted Diagnosis System and Prognosis of Lung Adenocarcinomas Presented as Ground-glass Nodules

Funding: 

Youth Science and Technology Fund of Gansu Province 18JR3RA305

More Information
  • Corresponding author:

    HAN Biao, E-mail: hanbiao66@163.com

  • Received Date: March 08, 2021
  • Revised Date: May 12, 2021
  • Available Online: January 12, 2024
  • Objective 

    To investigate the relation between the imaging microfeatures of AI-assisted diagnosis system and the prognosis of lung adenocarcinomas presented as ground-glass nodules (GGN).

    Methods 

    We retrospectively analyzed CT data of 162 patients with lung adenocarcinomas presented as GGN. According to different imaging characteristics, the patients were divided into pure ground glass nodules (PGGN) group and mixed ground glass nodules (MGGN) group. The AI-assisted diagnosis system was used to extract their imaging microfeatures, and their relation with the prognosis of the patients was analyzed.

    Results 

    The five-year OS and RFS were 89.7% and 88.5% in PGGN group, and 81.0% and 79.0% in MGGN group (χ2=6.289/7.255, P < 0.05). Multivariate Cox regression showed that imaging microfeatures such as microvascular cluster (P < 0.001), standard nodule volume (P=0.013) and nodule length (P < 0.001) were independent risk factors for OS, meanwhile, imaging microfeatures such as microvascular cluster (P < 0.001), standard nodule volume (P=0.017), nodule length (P=0.005), nodule central density (P=0.038) and lymph node metastasis (P < 0.001) were independent risk factors for RFS.

    Conclusion 

    The AI-assisted diagnosis system can effectively predict the prognosis of lung adenocarcinomas presented as GGN, and it also has a certain reference value for the clinical precision diagnosis and treatment of GGN and the prevention and treatment of early lung cancer.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
    [2]
    张正华, 蔡雅倩, 韩丹, 等. 基于深度学习的肺结节筛检和定性诊断分析[J]. 肿瘤防治研究, 2020, 47(4): 283-287. doi: 10.3971/j.issn.1000-8578.2020.19.1107

    Zhang ZH, Cai YQ, Han D, et al. Pulmonary nodule screening and qualitative diagnosis based on deep learning[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(4): 283-287. doi: 10.3971/j.issn.1000-8578.2020.19.1107
    [3]
    范子文, 谢冬, 姜格宁, 等. 肺磨玻璃结节自然生长史研究进展[J]. 中国胸心血管外科临床杂志, 2019, 26(2): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201902014.htm

    Fan ZY, Xie D, Jiang GN, et al. Research progress on natural growth history of ground glass pulmonary nodules[J]. Zhongguo Xiong Xin Xue Guan Wai Ke Lin Chuang Za Zhi, 2019, 26(2): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201902014.htm
    [4]
    Shi Z, Deng J, She Y, et al. Quantitative features can predict further growth of persistent pure ground-glass nodule[J]. Quant Imaging Med Surg, 2019, 9(2): 283-291. doi: 10.21037/qims.2019.01.04
    [5]
    赵蒙蒙, 汪洋, 邓家骏, 等. 人工智能卷积神经网络在全视野数字切片图像分析中的应用进展[J]. 中国胸心血管外科临床杂志, 2019, 26(11): 1063-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201911004.htm

    Zhao MM, Wang Y, Deng JJ, et al. Advances in the application of artificial intelligence convolutional neural network in full-field digital slice image analysis[J]. Zhongguo Xiong Xin Xue Guan Wai Ke Lin Chuang Za Zhi, 2019, 26(12): 1161-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201911004.htm
    [6]
    中国医药教育协会胸外科专业委员会, 中国胸外科肺癌联盟, 浙江省医学会胸外科学分会, 等. 人工智能平台下肺结节的三维可视化定位与手术规划专家共识[J]. 中国胸心血管外科临床杂志, 2019, 26(12): 1161-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201912001.htm

    Thoracic Surgery Professional Committee of China Medical Education Association, China Lung Cancer Union, Thoracic Surgery Branch of Zhejiang Medical Association, et al. Expert consensus on three-dimensional visualization localization and surgical planning of pulmonary nodules under artificial intelligence platform[J]. Zhongguo Xiong Xin Xue Guan Wai Ke Lin Chuang Za Zhi, 2019, 26(12): 1161-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX201912001.htm
    [7]
    She Y, Jin Z, Wu J, et al. Development and Validation of a Deep Learning Model for Non-Small Cell Lung Cancer Survival[J]. JAMA Netw Open, 2020, 3(6): e205842. doi: 10.1001/jamanetworkopen.2020.5842
    [8]
    虞梁, 王俊, 李洪, 等. 肺磨玻璃结节CT影像征象鉴别诊断肺浸润性腺癌与微浸润腺癌[J]. 南京医科大学学报(自然科学版), 2020, 40(2): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202002019.htm

    Yu L, Wang J, Li H, et al. Differential diagnosis of lung infiltrating adenocarcinoma and microinfiltrating adenocarcinoma with CT findings of lung ground glass nodules[J]. Nanjing Yi Ke Da Xue Xue Bao(Zi Ran Ke Xue Ban), 2020, 40(2): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202002019.htm
    [9]
    李宁, 苏乐廷, 傅昱, 等. CT定量分析预测肺纯磨玻璃结节侵袭性的价值[J]. 华北理工大学学报(医学版), 2021, 23(1): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTYX202101014.htm

    Li N, Su LT, Fu Y, et al. The value of CT quantitative analysis in predicting invasion of pure ground glass pulmonary nodules[J]. Hua Bei Li Gong Da Xue Xue Bao(Yi Xue Ban), 2021, 23(1): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTYX202101014.htm
    [10]
    张正华, 周小君, 韩丹, 等. 基于AI对磨玻璃密度早期肺癌浸润相关因素Logistic回归分析[J]. 临床放射学杂志, 2020, 39(10): 2120-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202010046.htm

    Zhang ZH, Zhou XJ, Han D, et al. Logistic regression analysis of factors related to early lung cancer infiltration in ground glass density based on AI[J]. Lin Chuang Fang She Xue Za Zhi, 2020, 39(10): 2120-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202010046.htm
    [11]
    闵旭红, 宋奇隆, 余永强, 等. 三维CT定量联合定性参数的logistic回归模型对纯磨玻璃结节侵袭程度的临床预测价值[J]. 中华放射学杂志, 2021, 55(1): 34-39. doi: 10.3760/cma.j.cn112149-20200318-00416

    Min XH, Song QL, Yu YQ, et al. Clinical predictive value of three-dimensional CT combined with logistic regression model of qualitative parameters for the invasion degree of pure ground glass nodules[J]. Zhonghua Fang She Xue Za Zhi, 2021, 55(1): 34-39. doi: 10.3760/cma.j.cn112149-20200318-00416
    [12]
    Tamura M, Shimizu Y, Yamamoto T, et al. Predictive value of onedimensional mean computed tomography value of ground-glass opacity on high-resolution images for the possibility of future change[J]. J Thorac Oncol, 2014, 9(4): 469-472. doi: 10.1097/JTO.0000000000000117
    [13]
    代平, 何其舟, 王思凯, 等. CT定量分析预测肺部肿瘤性磨玻璃结节病理侵袭性的价值[J]. 放射学实践, 2019, 34(10): 1108-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201910015.htm

    Dai P, He QZ, Wang SK, et al. The value of CT quantitative analysis in predicting the pathologic invasivity of pulmonary neoplastic ground glass nodules[J]. Fang She Xue Shi Jian, 2019, 34(10): 1108-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201910015.htm
    [14]
    曹琪琪, 杨文洁, 严福华, 等. 血管集束征在肺磨玻璃结节定性诊断中的价值研究[J]. 诊断学理论与实践, 2018, 17(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS201805012.htm

    Cao QQ, Yang WJ, Yan FH, et al. The value of vascular cluster sign in the qualitative diagnosis of ground glass pulmonary nodules[J]. Zhen Duan Xue Li Lun Yu Shi Jian, 2018, 17(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS201805012.htm
    [15]
    Chen D, Dai C, Kadeer X, et al. New horizons in surgical treatment of ground-glass nodules of the lung: experience and controversies[J]. Ther Clin Risk Manag, 2018, 14: 203-211. doi: 10.2147/TCRM.S152127
    [16]
    Ren Y, Huang S, Dai C, et al. Germline Predisposition and Copy Number Alteration in Pre-stage Lung Adenocarcinomas Presenting as Ground-Glass Nodules[J]. Front Oncol, 2019, 9: 288. doi: 10.3389/fonc.2019.00288
    [17]
    Mao R, She YL,  Zhu EJ, et al. A Proposal for Restaging of Invasive Lung Adenocarcinoma Manifesting as Pure Ground Glass Nodule[J]. Ann Thorac Surg, 2019, 107(5): 1523-1531. doi: 10.1016/j.athoracsur.2018.11.039
    [18]
    Su H, Gu C, She YL, et al. Predictors of upstage and treatment strategies for stage IA lung cancers after sublobar resection for adenocarcinoma in situ and minimally invasive adenocarcinoma[J]. Transl Lung Cancer Res, 2021, 10(1): 32-44. doi: 10.21037/tlcr-20-828
    [19]
    Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. http://www.onacademic.com/detail/journal_1000041692131499_13d7.html
  • Cited by

    Periodical cited type(4)

    1. 胡婉彦,汪溢,秦晓燕,郑志昂. 膀胱移行细胞癌患者血cGAS、STING基因表达与癌组织CD44阳性的剂量—效应关系. 疑难病杂志. 2025(02): 214-219 .
    2. 耿改丽,连文晓,陈蕊. 个案护理对膀胱肿瘤患者自我护理能力和生命质量的影响. 齐鲁护理杂志. 2024(01): 41-44 .
    3. 韦兴发,李智强,陈从其,林云侨,陈锦添. 卡介苗灌注联合经尿道红激光汽化切除术治疗非肌层浸润性膀胱癌的效果. 国际泌尿系统杂志. 2024(04): 628-631 .
    4. 郑宏,王栋洋. 膀胱癌组织中miR-451表达及其对患者术后生存预后的预测价值分析. 国际泌尿系统杂志. 2024(06): 1024-1027 .

    Other cited types(1)

Catalog

    Figures(5)  /  Tables(4)

    Article views (1741) PDF downloads (300) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return