Advances in Research on Lactate Metabolism Disorders and Their Effect on Immunotherapy in Lung Adenocarcinoma
-
摘要:
近年来,研究发现肺腺癌细胞的代谢重编程,尤其是乳酸代谢紊乱,对肿瘤的发生发展以及免疫治疗反应具有重要影响。乳酸的积累不仅为肿瘤细胞的增殖提供能量支持,还通过改变肿瘤微环境,影响免疫细胞的功能,进而促进免疫逃逸。免疫治疗,特别是免疫检查点抑制剂(ICIs)的应用,已成为肺腺癌治疗的重要手段。然而,乳酸代谢紊乱可能影响免疫治疗的疗效,导致部分患者对治疗产生耐药性。因此,深入理解乳酸代谢在肺腺癌中的作用机制,以及其对免疫治疗反应的影响,对于开发新的治疗策略和提高免疫治疗效果具有重要意义。本文总结了乳酸代谢紊乱在肺腺癌发生发展和免疫治疗中的作用,探讨了乳酸代谢相关基因和途径在肺腺癌中的潜在作用,以及乳酸代谢调控治疗策略的研究进展,以期为肺腺癌的治疗提供新的思路。
Abstract:Recent studies have identified that metabolic reprogramming in lung adenocarcinoma cells, particularly lactate metabolism disorders, plays a crucial role in tumor development and immune therapy response. The accumulation of lactic acid not only provides energy support for the proliferation of tumor cells but also affects the function of immune cells by changing the tumor microenvironment, thereby promoting immune escape. Immunotherapy, especially the application of immune checkpoint inhibitors, has become an important strategy for treating lung adenocarcinoma. However, lactate metabolism disorders might affect the efficacy of immunotherapy, leading to resistance in some patients. Therefore, a thorough understanding of the mechanisms of lactic acid metabolism in lung adenocarcinoma and its impact on the response to immunotherapy is essential for developing new therapeutic strategies and improving the efficacy of immunotherapy. This review summarizes the role of lactate metabolism disorders in the development and immunotherapy of lung adenocarcinoma, discusses the potential role of lactic acid metabolism-related genes and pathways in lung adenocarcinoma, and explores the progress in therapeutic strategies targeting lactic acid metabolism regulation. This work aims to provide new insights for the treatment of lung adenocarcinoma.
-
Key words:
- Lung adenocarcinoma /
- Lactate metabolism /
- Immunotherapy /
- Tumor microenvironment /
- Immune escape
-
0 引言
肺腺癌作为肺癌的主要亚型,发病率和死亡率逐年上升[1-2]。根据世界卫生组织统计,肺腺癌占所有肺癌病例的40%~55%,其病因与吸烟、环境污染和遗传因素密切相关[3-4]。尽管近年来手术、放疗、化疗及靶向治疗等手段有所发展,但大多数患者在诊断时已处于晚期,五年生存率仍然较低[5-7]。因此,深入理解肺腺癌的发生机制并探索新的治疗策略至关重要。
代谢改变是癌细胞的重要特征,正常细胞在有氧条件下通过糖酵解和三羧酸循环生成ATP[8],而癌细胞则通过瓦伯格效应,即在有氧条件下大量摄取葡萄糖,并转化为乳酸,为其增殖提供能量支持[9]。乳酸积累改变了肿瘤微环境、抑制免疫细胞功能,从而促进肿瘤生长和侵袭[10-12]。乳酸作为信号分子,通过激活下游信号通路促进癌细胞的增殖、迁移和侵袭[13-16]。因此,研究乳酸代谢在肺腺癌中的作用对于揭示其发病机制和寻找新治疗靶点具有重要意义。
免疫治疗,特别是免疫检查点抑制剂(Immune checkpoint inhibitors,ICIs)在肺腺癌治疗中展现出显著疗效。然而,患者对免疫治疗的反应存在差异,部分患者表现出免疫逃逸现象,其中乳酸代谢紊乱起关键作用[17]。乳酸在肿瘤微环境中的积累抑制免疫细胞活性,降低抗肿瘤免疫应答[12],并通过激活乳酸受体[又称羟基羧酸受体1(Hydroxycarboxylic acid receptor 1, HCAR1/GPR81)],促进细胞程序性死亡-配体1(Programmed cell death 1 ligand, PD-L1)表达和免疫逃逸[17]。因此,靶向乳酸代谢及其关键酶可能为肿瘤治疗提供新思路。
尽管乳酸代谢在肺腺癌和免疫治疗中的重要性日益受到关注,但具体相关基因的鉴定及其对免疫治疗疗效的影响尚未充分研究。本综述旨在探讨乳酸在肿瘤微环境(Tumor microenvironment, TME)中的作用,调控乳酸代谢的因素,以及其在肺腺癌免疫治疗中的应用和挑战,以期为临床前研究提供新思路。
1 乳酸在肿瘤中的代谢和作用
乳酸的产生主要依赖糖酵解,处于缺氧环境的癌细胞不能利用三羧酸循环(Tricarboxylic acid cycle,TCA)产生ATP,为了弥补ATP产生不足,糖酵解途径被过度激活。糖酵解是乳酸的主要来源,除此之外,癌细胞中的谷氨酰胺代谢也会产生乳酸。在缺氧的状态下,MYC基因被激活。在MYC的调控下,谷氨酰胺通过氨基酸转运体穿过细胞膜,在细胞质中生成谷氨酸[18]。谷氨酸进入线粒体,通过一系列反应生成α-酮戊二酸(Alphaketoglutaricacid, α-KG),α-KG参与TCA循环。在TCA循环中,α-KG首先生成苹果酸,之后代谢成丙酮酸,而丙酮酸又是乳酸的底物来源,因此谷氨酰胺是产生乳酸的次要途径[19]。乳酸在癌细胞内生成后,经调控乳酸进出细胞内外的单羧酸转运体(Monocarboxylate transporters, MCTs)排出细胞,进入TME。在肿瘤组织的空间结构中,中心是缺氧区域,而周围是含氧区域。 缺氧区域的肿瘤细胞产生的乳酸进入TME,可通过单羧酸转运体-1(Monocarboxylate transporter 1, MCT1)被含氧区域的癌细胞摄入,利用TCA为细胞供能,这种现象在TME中被称为“代谢共生”[20-23]。另外,乳酸还可结合并激活肿瘤细胞和非肿瘤细胞表面的G蛋白偶联受体81(G protein-coupled receptor 81, GPR81),以不同方式促进肿瘤生长[17]。
正常生理条件下,机体免疫系统通过监测和清除外源性物质维持免疫稳态[24]。肿瘤细胞对于机体来说是一种外源性物质,因此,在肿瘤细胞形成早期人体会激活免疫系统。但是,肿瘤细胞会逐渐抵抗免疫系统的攻击[25]。其中,乳酸在免疫抵抗机制中发挥重要作用。研究表明,乳酸通过抑制免疫细胞的功能或诱导其凋亡,导致抗肿瘤免疫发生,促进肿瘤转移[20]。乳酸还可激活TME中非肿瘤细胞的GPR81,阻止肿瘤特异性抗原向其他免疫细胞的呈递,促进免疫抑制表型,为肿瘤细胞逃避免疫系统提供有效手段[26]。因此,乳酸是调节抗肿瘤免疫的关键分子,抑制肿瘤细胞乳酸代谢途径可能增强肿瘤免疫,抑制肿瘤转移和进展。
2 乳酸代谢紊乱与肺腺癌微环境
肺腺癌作为非小细胞肺癌的主要亚型,其发生发展与细胞代谢的重编程密切相关[27]。近年来,研究发现乳酸代谢紊乱在肺腺癌的代谢特征中占据重要地位[28]。乳酸可对肺腺癌细胞的生物学行为产生显著影响。一方面,乳酸的积累可以促进肿瘤细胞的增殖和存活,通过激活相关信号通路如PI3K/Akt和MAPK,促进细胞周期蛋白的表达,从而加速细胞分裂[29-30]。另一方面,乳酸还能够促进肿瘤细胞的侵袭和转移。研究表明,乳酸可以激活肿瘤细胞表面的一些受体,如HIF-1α和NF-κB,进而诱导基质金属蛋白酶(MMPs)的表达,促进细胞外基质的降解,为肿瘤细胞的侵袭和转移提供通道[31-33]。因此,乳酸代谢紊乱在肺腺癌的发生发展中扮演着重要角色,不仅为肿瘤细胞提供了能量支持,还促进了肿瘤的侵袭性和转移能力。
乳酸代谢紊乱不仅影响肺腺癌细胞本身,还对肿瘤微环境产生重要作用。一方面,乳酸通过降低肿瘤微环境的pH值,创造了一个酸性环境。这种酸性环境不仅有利于肿瘤细胞的生存和增殖,还能抑制免疫细胞的功能。研究表明,酸性环境可以抑制T细胞的活性和增殖,减少自然杀伤(Natural killer, NK)细胞的毒杀作用,从而降低肿瘤细胞被免疫系统清除的可能性[12]。
另一方面,乳酸还可以直接作用于免疫细胞,影响它们的功能。例如,乳酸可以抑制树突状细胞(Dentritic cell, DC)的成熟和抗原呈递能力,减少细胞因子如IL-12的产生,从而降低T细胞的激活[34-35]。此外,乳酸还能通过影响单核细胞和巨噬细胞的极化,促进肿瘤相关巨噬细胞(Tumor-associated macrophages, TAM)的形成,这些TAM通常具有免疫抑制作用,进一步帮助肿瘤细胞逃避免疫监视[13-36]。
因此,乳酸代谢紊乱通过改变肿瘤微环境,特别是通过影响免疫细胞的功能,为肺腺癌的免疫逃逸提供了重要机制,继而影响肺腺癌的免疫治疗效果。这些发现强调了在肺腺癌治疗中考虑代谢调控和免疫调节的重要性。
3 肺腺癌的免疫治疗
在非小细胞肺癌中,肺腺癌占据了最常见的亚型地位。随着分子生物学的进步,靶向治疗已成为肺腺癌治疗的重要手段,尤其是对于那些携带特定驱动基因突变的患者。然而,当患者对靶向治疗产生耐药性或在治疗过程中疾病复发时,免疫治疗便成为二线或后续治疗的重要选择。
免疫治疗,尤其是免疫检查点抑制剂的应用,已经在非小细胞肺癌的治疗中取得了显著成效[37-39]。这类药物通过解除肿瘤细胞对免疫系统的抑制,激活机体的免疫应答,从而达到控制肿瘤生长和扩散的目的。Reck等[40]发现,帕博利珠单抗(Pembrolizumab)单药组治疗非小细胞肺癌其总生存期(OS)及无进展生存期(PFS)较化疗组有明显提升。Borghaei等[41]研究显示,纳武利尤单抗(Nivolumab)对比多西他赛(Docetaxel)治疗非鳞状非小细胞肺癌,Nivolumab组的18个月OS为39%、客观缓解率(ORR)为19%,高于Docetaxel组的23%和12%(P=0.02)。基于PACIFIC[42]的研究,对于不可手术的局部晚期非小细胞肺癌同步放化疗后的治疗巩固,对比安慰剂组PFS的5.6个月,度伐利尤单抗(Durvalumab)组则达到了17.2个月(P<0.001)。然而,并非所有的肺腺癌患者都能从免疫治疗中获益,其疗效在不同个体间存在较大差异[43-44]。
对于无驱动基因突变的肺腺癌患者,免疫治疗可以作为一种直接的治疗选择。在这种情况下,患者的治疗决策将更多地依赖于肿瘤的免疫微环境以及其他相关的生物标志物。因此,深入理解肺腺癌的免疫微环境特征,以及如何通过调节这些特征来提高免疫治疗的效果,成为了当前研究的重要方向。
4 调控乳酸代谢增强肺腺癌免疫治疗
乳酸通过多种机制影响肺腺癌的免疫治疗效果。首先,乳酸能够抑制免疫细胞的活性。肿瘤细胞的高乳酸产生会导致微环境酸化,抑制T细胞的增殖和效应功能,从而降低免疫治疗的效果。研究表明,乳酸能够通过抑制核因子κB(NF-κB)信号通路,减少促炎细胞因子的产生,从而抑制T细胞的活化和增殖[45]。其次,乳酸可以促进肿瘤免疫逃逸。乳酸能够增加肿瘤细胞表面的PD-L1表达,与免疫细胞上的PD-1结合,抑制免疫细胞的杀伤功能,促进肿瘤免疫逃逸[17]。此外,乳酸还能够通过激活信号转导和转录激活因子3(STAT3) 信号通路,促进肿瘤相关巨噬细胞的极化,进一步抑制免疫应答[46]。
在肺腺癌免疫治疗中,乳酸代谢的调控成为了一个潜在的治疗靶点。通过抑制乳酸产生或促进乳酸清除,可以改善肿瘤微环境,增强免疫细胞的活性,提高免疫治疗的效果[47]。例如,靶向乳酸脱氢酶A(Lactate dehydrogenase A, LDHA)的小分子抑制剂,可以减少乳酸的产生,增强T细胞的抗肿瘤活性[48]。同时,通过增加MCT1的表达,可以促进乳酸的清除,改善肿瘤微环境,增强免疫治疗的效果[49-51]。因此通过靶向抑制乳酸代谢途径,减少乳酸的产生和累积,是实现乳酸代谢调控的可能性,增强肿瘤免疫治疗效果的关键。
5 总结与展望
乳酸代谢紊乱在肺腺癌的发生发展及免疫治疗中扮演着重要角色。肺腺癌细胞的代谢重编程导致乳酸的积累,进而影响肿瘤细胞的增殖、侵袭和转移。乳酸代谢紊乱还能够调节肿瘤微环境,抑制免疫细胞的活性,降低免疫治疗的效果。因此,深入理解乳酸代谢在肺腺癌中的作用机制,有望为肺腺癌的治疗提供新的靶点和策略。
展望未来,乳酸代谢领域的研究将面临几个挑战和机遇。首先,需要更深入地揭示乳酸代谢紊乱在肺腺癌发生发展中的具体作用机制,以及其与其他代谢途径的相互作用。其次,探索乳酸代谢指标在肺腺癌诊断和预后评估中的应用潜力,可能为临床实践提供新的工具。最重要的是,开发针对乳酸代谢的治疗策略,如乳酸生成抑制剂、乳酸运输抑制剂等,以及将这些策略与现有的免疫治疗相结合,有望为肺腺癌患者带来更有效的治疗方案。
总之,乳酸代谢紊乱在肺腺癌的研究中具有重要的生物学意义和临床应用前景。未来的研究需要在多个层面上深化,以期在肺腺癌的诊断、治疗和预后评估中发挥更大的作用。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:郑亮剪:文献查阅、文章撰写及修改朱刚锋、李俊彦、车婕、陈慈香:文献查阅向 奕:文章指导、校对及修改施华球:文章指导、校对 -
[1] Liu Y, Zhou J, Wu J, et al. Construction and Validation of a Novel Immune-Related Gene Pairs-Based Prognostic Model in Lung Adenocarcinoma[J]. Cancer Control, 2023, 30: 10732748221150227.
[2] Gao C, Zhuang J, Li H, et al. Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database[J]. Aging (Albany NY), 2021, 13(3): 3957-3968.
[3] Dresler C. The changing epidemic of lung cancer and occupational and environmental risk factors[J]. Thorac Surg Clin, 2013, 23(2): 113-122. doi: 10.1016/j.thorsurg.2013.01.015
[4] Wu S, Powers S, Zhu W, et al. Substantial contribution of extrinsic risk factors to cancer development[J]. Nature, 2016, 529(7584): 43-47. doi: 10.1038/nature16166
[5] Ganti AK, Klein AB, Cotarla I, et al. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non-Small Cell Lung Cancer in the US[J]. JAMA Oncol, 2021, 7(12): 1824-1832. doi: 10.1001/jamaoncol.2021.4932
[6] Löfling L, Bahmanyar S, Kieler H, et al. Temporal trends in lung cancer survival: a population-based study[J]. Acta Oncol, 2022, 61(5): 625-631. doi: 10.1080/0284186X.2021.2013529
[7] Zhang C, He Z, Cheng L, et al. Investigation of Prognostic Markers of Lung Adenocarcinoma Based on Tumor Metabolism-Related Genes[J]. Front Genet, 2021, 12: 760506. doi: 10.3389/fgene.2021.760506
[8] Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel[J]. Cancer Cell, 2008, 13(6): 472-482. doi: 10.1016/j.ccr.2008.05.005
[9] Lee SH, Mcintyre D, Honess D, et al. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo[J]. Br J Cancer, 2018, 119(5): 622-630. doi: 10.1038/s41416-018-0216-5
[10] Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat[J]. Nat Rev Cancer, 2017, 17(10): 577-593. doi: 10.1038/nrc.2017.77
[11] Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007, 109(9): 3812-3819. doi: 10.1182/blood-2006-07-035972
[12] Husain Z, Huang Y, Seth P, et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells[J]. J Immunol, 2013, 191(3): 1486-1495. doi: 10.4049/jimmunol.1202702
[13] Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. doi: 10.1038/nature13490
[14] Gao F, Tang Y, Liu WL, et al. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors[J]. Adv Mater, 2019, 31(51): e1904639. doi: 10.1002/adma.201904639
[15] Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature, 2017, 551(7678): 115-118. doi: 10.1038/nature24057
[16] Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021, 591(7851): 645-651. doi: 10.1038/s41586-020-03045-2
[17] Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. doi: 10.1016/j.pharmthera.2019.107451
[18] Wise DR, Deberardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci U S A, 2008, 105(48): 18782-18787. doi: 10.1073/pnas.0810199105
[19] Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics[J]. J Clin Invest, 2013, 123(9): 3685-3692. doi: 10.1172/JCI69741
[20] de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, et al. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches[J]. Front Oncol, 2019, 9: 1143. doi: 10.3389/fonc.2019.01143
[21] Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice[J]. J Clin Invest, 2008, 118(12): 3930-3942.
[22] Fiaschi T, Marini A, Giannoni E, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay[J]. Cancer Res, 2012, 72(19): 5130-5140. doi: 10.1158/0008-5472.CAN-12-1949
[23] Brooks GA. Lactate: link between glycolytic and oxidative metabolism[J]. Sports Med, 2007, 37(4-5): 341-343.
[24] Davies M. New modalities of cancer treatment for NSCLC: focus on immunotherapy[J]. Cancer Manag Res, 2014, 6: 63-75.
[25] Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis[J]. J Mol Med (Berl), 2016, 94(5): 509-522. doi: 10.1007/s00109-015-1376-x
[26] Brown TP, Bhattacharjee P, Ramachandran S, et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J]. Oncogene, 2020, 39(16): 3292-3304. doi: 10.1038/s41388-020-1216-5
[27] Faubert B, Solmonson A, Deberardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. doi: 10.1126/science.aaw5473
[28] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. doi: 10.1016/j.cell.2011.02.013
[29] Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27: 441-464. doi: 10.1146/annurev-cellbio-092910-154237
[30] Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511(7511): 543-550. doi: 10.1038/nature13385
[31] Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7): 2550-2560. doi: 10.1158/0008-5472.CAN-10-2828
[32] Zhong C, Chen M, Chen Y, et al. Loss of DSTYK activates Wnt/β-catenin signaling and glycolysis in lung adenocarcinoma[J]. Cell Death Dis, 2021, 12(12): 1122. doi: 10.1038/s41419-021-04385-1
[33] Qian Y, Galan-Cobo A, Guijarro I, et al. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma[J]. Cancer Cell, 2023, 41(7): 1363-1380. e7.
[34] Gottfried E, Kunz-Schughart LA, Ebner S, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression[J]. Blood, 2006, 107(5): 2013-2021. doi: 10.1182/blood-2005-05-1795
[35] Nasi A, Fekete T, Krishnamurthy A, et al. Dendritic cell reprogramming by endogenously produced lactic acid[J]. J Immunol, 2013, 191(6): 3090-3099. doi: 10.4049/jimmunol.1300772
[36] Peter K, Rehli M, Singer K, et al. Lactic acid delays the inflammatory response of human monocytes[J]. Biochem Biophys Res Commun, 2015, 457(3): 412-418. doi: 10.1016/j.bbrc.2015.01.005
[37] Miao D, Zhao J, Han Y, et al. Management of locally advanced non-small cell lung cancer: State of the art and future directions[J]. Cancer Commun (Lond), 2024, 44(1): 23-46. doi: 10.1002/cac2.12505
[38] Büttner R, Gosney JR, Skov BG, et al. Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2017, 35(34): 3867-3876. doi: 10.1200/JCO.2017.74.7642
[39] Brahmer JR, Govindan R, Anders RA, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC)[J]. J Immunother Cancer, 2018, 6(1): 75. doi: 10.1186/s40425-018-0382-2
[40] Reck M, Rodríguez-Abreu D, Robinson AG, et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50[J]. J Clin Oncol, 2021, 39(21): 2339-2349. doi: 10.1200/JCO.21.00174
[41] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639. doi: 10.1056/NEJMoa1507643
[42] Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after Chemoradiotherapy in Stage Ⅲ Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929. doi: 10.1056/NEJMoa1709937
[43] Wu S, Zhan W, Liu L, et al. Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study[J]. J Immunother Cancer, 2023, 11(10): e007369. doi: 10.1136/jitc-2023-007369
[44] Xie S, Huang G, Qian W, et al. Integrated analysis reveals the microenvironment of non-small cell lung cancer and a macrophage-related prognostic model[J]. Transl Lung Cancer Res, 2023, 12(2): 277-294. doi: 10.21037/tlcr-22-866
[45] Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts[J]. Cell Cycle, 2011, 10(11): 1772-1783. doi: 10.4161/cc.10.11.15659
[46] Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. doi: 10.1038/s41586-019-1678-1
[47] Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, et al. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy[J]. Cancer Res, 2016, 76(6): 1381-1390. doi: 10.1158/0008-5472.CAN-15-1743
[48] Shang S, Wang MZ, Xing Z, et al. Lactate regulators contribute to tumor microenvironment and predict prognosis in lung adenocarcinoma[J]. Front Immunol, 2022, 13: 1024925. doi: 10.3389/fimmu.2022.1024925
[49] Stewart PA, Parapatics K, Welsh EA, et al. A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma[J]. PLoS One, 2015, 10(11): e0142162. doi: 10.1371/journal.pone.0142162
[50] Prado-Garcia H, Campa-Higareda A, Romero-Garcia S. Lactic Acidosis in the Presence of Glucose Diminishes Warburg Effect in Lung Adenocarcinoma Cells[J]. Front Oncol, 2020, 10: 807. doi: 10.3389/fonc.2020.00807
[51] Murray CM, Hutchinson R, Bantick JR, et al. Monocarboxylate transporter MCT1 is a target for immunosuppression[J]. Nat Chem Biol, 2005, 1(7): 371-376. doi: 10.1038/nchembio744
计量
- 文章访问数: 634
- HTML全文浏览量: 449
- PDF下载量: 803