高级搜索

Trop2在实体肿瘤中的临床研究进展

张颖, 刘月平

张颖, 刘月平. Trop2在实体肿瘤中的临床研究进展[J]. 肿瘤防治研究, 2025, 52(1): 79-86. DOI: 10.3971/j.issn.1000-8578.2025.24.0542
引用本文: 张颖, 刘月平. Trop2在实体肿瘤中的临床研究进展[J]. 肿瘤防治研究, 2025, 52(1): 79-86. DOI: 10.3971/j.issn.1000-8578.2025.24.0542
ZHANG Ying, LIU Yueping. Progress of Clinical Research on Trop2 in Solid Tumors[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 79-86. DOI: 10.3971/j.issn.1000-8578.2025.24.0542
Citation: ZHANG Ying, LIU Yueping. Progress of Clinical Research on Trop2 in Solid Tumors[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 79-86. DOI: 10.3971/j.issn.1000-8578.2025.24.0542

Trop2在实体肿瘤中的临床研究进展

详细信息
    作者简介:

    张颖,女,硕士,主要从事消化道肿瘤相关研究,ORCID: 0000-0002-2192-7580

    通讯作者:

    刘月平,女,博士,主任医师,主要从事乳腺数字病理及人工智能应用研究工作,E-mail: liuyp@hebmu.edu.cn,ORCID: 0000-0002-4582-114X

  • 中图分类号: R730.5

Progress of Clinical Research on Trop2 in Solid Tumors

More Information
  • 摘要:

    滋养层细胞表面抗原2(Trop2)是一种在正常组织中几乎不表达而在恶性实体肿瘤中高度表达的糖蛋白,且与其不良预后显著相关。目前,临床开发了多种针对Trop2的靶向疗法,例如抗Trop2抗体和靶向Trop2的抗体偶联药物(ADC),一些已经被批准或正在临床试验中用于癌症治疗。本文对Trop2的基因结构、作用机制及其在实体肿瘤中的临床研究和药物研发等方面进行阐述,为临床开发更加安全有效的针对Trop2的靶向药物提供参考。

     

    Abstract:

    Trophoblast cell surface antigen 2 (Trop2) is a glycoprotein that is barely expressed in normal tissues but highly expressed in malignant tumors; it is remarkably associated with poor prognosis. Various targeted therapeutics against Trop2, such as anti-Trop2 antibodies and antibody-drug conjugate drugs targeting Trop2, have been developed, and some therapeutics have been approved or are in clinical trials for cancer treatment. In this review, we comprehensively discuss the gene structure, mechanism of action, clinical research, drug development, and other aspects of Trop2 to provide references for the clinical development of effective and safe Trop2-targeting drugs.

     

  • 结直肠癌是全球第三大最常见的恶性肿瘤,也是癌症相关死亡的第二大原因[1],给卫生保健系统带来了沉重的负担。结直肠息肉是正常结直肠黏膜表面的突出物,组织学上可分为腺瘤性和非腺瘤性息肉,而“正常黏膜-腺瘤-癌”路径被认为是结直肠癌的主要演变过程,涉及组织细胞内驱动突变的逐渐累积,最终发生癌变[2-3]。结直肠腺瘤性息肉进展为结直肠癌的发病率和死亡率显著增加,因此,通过结肠镜检查对腺瘤性息肉进行早期筛查并行内镜下切除可有效降低结直肠癌的发生风险。中老年人围手术期并发症发生率及死亡率增加,术后恢复期长,对生活质量影响大[3-4],在早期发现和早期治疗结直肠腺瘤性息肉方面需更为重视。本文以我院就诊的中老年结直肠息肉患者为研究对象,评估不同病理类型息肉的临床和内镜特征,分析社会人口学、生活饮食习惯、临床病史、内镜特点等指标对腺瘤性息肉的影响,最终确定结直肠腺瘤性息肉的危险因素,以对高危人群进行充分的监测,为提高结直肠癌的早期筛查及诊疗水平提供依据。

    数据来源于2023年4月至2024年6月在首都医科大学附属北京友谊医院消化内镜中心行结肠镜检查及内镜下治疗的中老年患者,对以上患者进行相关问卷调查、实验室和结肠镜检查及息肉病理数据收集。本研究已经本院伦理委员会审核批准(2022-P2-401-01),所有患者均签署知情同意书。纳入标准:(1)年龄>45岁;(2)均自愿行结肠镜检查,且经病理检查确诊;(3)临床资料均完整无缺项。排除标准:(1)既往行下消化道外科手术;(2)妊娠患者;(3)正在参加其他临床研究,会影响本研究的搜集指标者。

    结肠镜检查前患者配合医生认真完成调查问卷的填写,内容包括患者姓名、年龄、性别、生活饮食习惯、慢性病史、简易精神状态评价量表(Mini-mental state examination, MMSE)等。身高和体重在内镜检查前规范测量,体重指数(Body mass index, BMI)由体重(kg)除以身高(m)的平方得出。高血压由患者自我报告的高血压病史确定。甘油三酯、血糖等空腹血液生化指标由医院检验科分析得出。益生菌是指食品中的活的有益微生物,包括双歧杆菌、乳杆菌、酪酸梭菌、布拉酵母菌、肠球菌、地衣芽孢杆菌和蜡样芽孢杆菌等。

    所有患者均由经验丰富的消化内科医生使用电子结肠镜进行检查。患者在检查前一天分次口服聚乙二醇电解质散溶液以行肠道准备,检查时协助患者保持左侧卧位、双膝屈曲。结肠镜检查时准确记录息肉的数量、部位、形态、大小等信息,镜下取活检或根据患者实际情况选择合理治疗方案切除息肉,包括圈套器摘除、内镜下黏膜切除术、内镜黏膜下剥离术等。将息肉组织标本进行合理固定后送往病理科行病理检查,由经验丰富的病理科医生进行诊断。根据病理特点,炎性息肉、增生性息肉被定义为非腺瘤性息肉,而锯齿状腺瘤、管状腺瘤、管状绒毛状腺瘤、绒毛状腺瘤被定义为腺瘤性息肉。

    数据采用R软件(4.2.2版)进行分析。正态分布的连续变量用均值和标准差表示,非正态分布的连续变量用中位数和四分位间距表示,计数资料数据用数量和百分比表示。多独立样本的组间比较时,分类变量采用卡方检验,正态分布的连续变量需采用方差分析,非正态分布的连续变量需采用Kruskal-Wallis检验。通过单因素及多因素Logistic回归分析对年龄、性别、BMI、生活饮食习惯、实验室数据、结肠镜病理检查结果等因素计算比值比(Odds ratio, OR)和95%CI。双侧P<0.05表示差异有统计学意义。

    共有1 527例45岁以上的结直肠息肉患者被纳入分析。经病理确诊,其中炎性息肉264例(17.3%),增生性息肉262例(17.2%),锯齿状腺瘤39例(2.6%),管状腺瘤926例(60.6%),管状绒毛状腺瘤33例(2.2%),绒毛状腺瘤3例(0.2%)。各病理分组下的临床和病理特征见表1,其中年龄、BMI、吸烟史、饮酒史、益生菌服用习惯、MMSE评分、息肉部位、息肉形态、息肉长径在各组间的差异均有统计学意义(均P<0.05)。

    表  1  不同病理类型的结直肠息肉患者的基线特征
    Table  1  Baseline characteristics of patients with colorectal polyps of different pathological types
    Total Inflammatory
    polyps
    Hyperplastic
    polyps
    Serrated
    adenomas
    Tubular
    adenomas
    Tubular villous
    adenomas
    Villous
    adenomas
    P
    Number 1 527 264 262 39 926 33 3
    Gender(n(%)) 0.141
    Male 826(54.1) 127(48.1) 142(54.2) 24(61.5) 518(55.9) 14(42.4) 1(33.3)
    Female 701(45.9) 137(51.9) 120(45.8) 15(38.5) 408(44.1) 19(57.6) 2(66.7)
    Age, mean(SD) 69.85(5.23) 69.29(4.49) 69.28(5.65) 69.44(4.45) 70.15(5.35) 71.03(4.58) 71.00(0.00) 0.047
    BMI, mean(SD)(kg/m2) 24.44(3.34) 24.19(3.41) 24.33(3.06) 23.54(3.05) 24.68(3.38) 21.87(2.61) 24.03(1.86) <0.001
    Smoking history(n(%)) 0.001
    No 1117(73.1) 217(82.2) 202(77.1) 28(71.8) 643(69.4) 25(75.8) 2(66.7)
    Yes 410(26.9) 47(17.8) 60(22.9) 11(28.2) 283(30.6) 8(24.2) 1(33.3)
    Drinking history(n(%)) <0.001
    No 1086(71.1) 216(81.8) 195(74.4) 29(74.4) 621(67.1) 23(69.7) 2(66.7)
    Yes 441(28.9) 48(18.2) 67(25.6) 10(25.6) 305(32.9) 10(30.3) 1(33.3)
    Hypertension(n(%)) 0.277
    No 797(52.2) 143(54.2) 152(58.0) 19(48.7) 466(50.3) 15(45.5) 2(66.7)
    Yes 730(47.8) 121(45.8) 110(42.0) 20(51.3) 460(49.7) 18(54.5) 1(33.3)
    Triglyceride, mean(SD)
    (mmol/L)
    1.44(0.76) 1.47(0.78) 1.47(0.79) 1.31(0.67) 1.44(0.75) 1.24(0.59) 1.69(0.40) 0.469
    Fasting blood glucose,
    mean(SD)(mmol/L)
    5.67(1.33) 5.64(1.46) 5.85(1.19) 6.01(1.50) 5.62(1.31) 5.47(1.43) 5.66(0.16) 0.081
    Eat cereal(n(%)) 0.835
    ≥4 times per week 572(37.5) 95(36.0) 96(36.6) 17(43.6) 350(37.8) 12(36.4) 2(66.7)
    <4 times per week 955(62.5) 169(64.0) 166(63.4) 22(56.4) 576(62.2) 21(63.6) 1(33.3)
    Eat fresh vegetables (n(%)) 0.686
    ≥4 times per week 1412(92.5) 250(94.7) 240(91.6) 35(89.7) 853(92.1) 31(93.9) 3(100.0)
    <4 times per week 115(7.5) 14(5.3) 22(8.4) 4(10.3) 73(7.9) 2(6.1) 0(0.0)
    Eat fresh fruits(n(%)) 0.72
    ≥4 times per week 1223(80.1) 213(80.7) 215(82.1) 32(82.1) 736(79.5) 24(72.7) 3(100.0)
    <4 times per week 304(19.9) 51(19.3) 47(17.9) 7(17.9) 190(20.5) 9(27.3) 0(0.0)
    Eat probiotics(n(%)) 0.027
    ≥4 times per week 1363(89.3) 242(91.7) 223(85.1) 36(92.3) 834(90.1) 26(78.8) 2(66.7)
    <4 times per week 164(10.7) 22(8.3) 39(14.9) 3(7.7) 92(9.9) 7(21.2) 1(33.3)
    MMSE score, mean(SD) 28.76(2.21) 28.96(1.60) 28.99(1.61) 28.33(2.04) 28.70(2.38) 27.67(4.45) 28.00(1.00) 0.008
    Polyp location(n(%)) <0.001
    Ileocecal region 98(6.4) 21(8.0) 11(4.2) 7(17.9) 55(5.9) 3(9.1) 1(33.3)
    Ascending colon 279(18.3) 52(19.7) 29(11.1) 12(30.8) 179(19.3) 7(21.2) 0(0.0)
    Transverse colon 429(28.1) 62(23.5) 50(19.1) 9(23.1) 301(32.5) 7(21.2) 0(0.0)
    Descending colon 214(14.0) 39(14.8) 26(9.9) 5(12.8) 141(15.2) 3(9.1) 0(0.0)
    Sigmoid colon 321(21.0) 46(17.4) 91(34.7) 2(5.1) 172(18.6) 9(27.3) 1(33.3)
    Rectum 186(12.2) 44(16.7) 55(21.0) 4(10.3) 78(8.4) 4(12.1) 1(33.3)
    Polyp shape(n(%)) <0.001
    Pedicled polyp 141(9.2) 20(7.6) 19(7.3) 2(5.1) 91(9.8) 9(27.3) 0(0.0)
    Sessile polyp 544(35.6) 59(22.3) 77(29.4) 16(41.0) 377(40.7) 14(42.4) 1(33.3)
    Flat polyp 790(51.7) 173(65.5) 162(61.8) 13(33.3) 433(46.8) 7(21.2) 2(66.7)
    Laterally
    developmental polyp
    52(3.4) 12(4.5) 4(1.5) 8(20.5) 25(2.7) 3(9.1) 0(0.0)
    Polyp diameter,
    mean(SD)(mm)
    7.54(6.80) 7.25(8.44) 5.24(2.68) 12.49(10.47) 7.87(6.41) 13.43(11.41) 4.67(2.89) <0.001
    下载: 导出CSV 
    | 显示表格

    在Logistic回归模型中,性别、年龄、BMI、吸烟史、饮酒史、高血压史、空腹甘油三酯水平、空腹血糖水平、饮食习惯、MMSE评分、息肉的病理特点均纳入分析范围。单变量回归分析显示,年龄更大、吸烟史、饮酒史、高血压病史及息肉长径是腺瘤性息肉的危险因素,而高MMSE评分(更良好的认知水平)、息肉部位为直肠及息肉形态为平坦型为保护性因素。经多变量模型调整后,结果显示:年龄更大(OR: 1.024,95%CI: 1.001~1.048,P=0.044)、BMI水平更高(OR: 1.046,95%CI: 1.008~1.087,P=0.020)和有吸烟史(OR: 1.493,95%CI: 1.035~2.158,P=0.032)的患者的结直肠息肉为腺瘤的风险显著升高,而高MMSE评分所代表的具有更好认知功能的患者结直肠息肉为非腺瘤性的可能性更大(OR: 0.929,95% CI: 0.871~0.984,P=0.017)。在息肉病理特征方面,病变部位在直肠(OR: 0.396,95%CI: 0.229~0.677,P=0.001)、平坦型(OR: 0.531,95%CI: 0.342~0.810,P=0.004)或侧向发育型(OR: 0.306,95%CI: 0.135~0.698,P=0.005)的息肉更多为非腺瘤性息肉,随着息肉大小的增加,病理为腺瘤性息肉的可能性显著增加(OR: 1.063,95%CI: 1.035~1.095,P<0.001),见表2

    表  2  腺瘤组和非腺瘤组单因素和多因素Logistic回归分析
    Table  2  Univariate and multivariate logistic regression analyses of adenoma and non-adenoma groups
    Variables Univariable model Multivariable model
    OR 95%CI P OR 95%CI P
    Gander (Female) 0.834 0.675-1.031 0.094 1.168 0.892-1.530 0.258
    Age 1.032 1.011-1.053 0.002 1.024 1.001-1.048 0.044
    BMI 1.026 0.994-1.060 0.118 1.046 1.008-1.087 0.020
    Smoking history 1.700 1.325-2.193 <0.001 1.493 1.035-2.158 0.032
    Drinking history 1.726 1.354-2.212 <0.001 1.264 0.881-1.815 0.204
    Hypertension 1.269 1.027-1.570 0.028 0.896 0.700-1.145 0.379
    Triglyceride (mmol/L) 0.929 0.811-1.067 0.294 0.875 0.746-1.028 0.101
    Fasting blood glucose (mmol/L) 0.936 0.866-1.012 0.096 0.944 0.867-1.029 0.182
    Eat cereal (<4 times per week) 0.928 0.745-1.154 0.502 0.888 0.695-1.132 0.339
    Eat fresh vegetables (<4 times per week) 1.166 0.781-1.774 0.461 1.653 1.003-2.769 0.052
    Eat fresh fruits (<4 times per week) 1.132 0.868-1.483 0.365 0.887 0.634-1.245 0.485
    Eat probiotics (<4 times per week) 0.874 0.627-1.229 0.433 0.800 0.555-1.160 0.234
    MMSE score 0.922 0.865-0.975 0.008 0.929 0.871-0.984 0.017
    Polyp location (Ascending colon) 1.185 0.717-1.935 0.501 1.216 0.721-2.027 0.457
    Polyp location (Transverse colon) 1.372 0.847-2.191 0.191 1.368 0.828-2.231 0.214
    Polyp location (Descending colon) 1.111 0.661-1.849 0.686 1.194 0.693-2.039 0.518
    Polyp location (Sigmoid colon) 0.651 0.401-1.042 0.078 0.686 0.412-1.126 0.141
    Polyp location (Rectum) 0.426 0.253-0.706 0.001 0.396 0.229-0.677 0.001
    Polyp shape (Sessile polyp) 1.147 0.750-1.729 0.519 1.141 0.725-1.772 0.562
    Polyp shape (Flat polyp) 0.519 0.346-0.765 0.001 0.531 0.342-0.810 0.004
    Polyp shape (Laterally spreading polyp) 0.860 0.434-1.753 0.671 0.306 0.135-0.698 0.005
    Polyp diameter 1.063 1.040-1.090 <0.001 1.063 1.035-1.095 <0.001
    下载: 导出CSV 
    | 显示表格

    结直肠癌是世界发病率和死亡率最高的消化系统恶性肿瘤[1],腺瘤性息肉被认为是大多数结直肠癌的前驱病变[5],早期识别腺瘤性息肉并行内镜下治疗是预防结直肠癌的重要措施。本研究分析了中老年结直肠腺瘤性和非腺瘤性息肉患者的人口统计学、生活习惯、临床病史、实验室检查、内镜特征等信息。结果表明,年龄更大、体重指数更高、吸烟、息肉大小是腺瘤性息肉的独立危险因素,而患者认知功能更好、病变部位在直肠和平坦型或侧向发育型形态的息肉病理更可能为非腺瘤性。

    本研究未发现腺瘤与非腺瘤患者间的性别差异。年龄是结直肠腺瘤发生的重要危险因素,结直肠息肉和结直肠癌的发病率一般随年龄增长而增加[6]。对无症状人群进行的结肠镜筛查研究表明,50岁人群的腺瘤患病率为25%~30%[7]。尸检研究发现,70岁人群的这一比例高达50%[8],而20多岁或30岁人群的这一比例只有1%~4%[9]。结肠镜检查是检测结直肠息肉和结直肠癌最有效的方式,基于多项研究结果,美国癌症协会指南建议根据患者的偏好从45岁开始进行结肠镜筛查,以早期发现结直肠癌和结直肠腺瘤息肉[10]。因此,我们将研究人群的年龄限制在45岁及以上的中老年人,结果表明,与先前的结果一致,年龄越大的结直肠息肉患者越容易发生腺瘤的病理改变。

    既往多项研究报道,肥胖与结直肠腺瘤的发生和复发密切相关[11-12],而减重可以有效降低腺瘤发生风险[13]。本研究结果也表明,代表超重和肥胖的高BMI水平会增加腺瘤发生的风险。这其中的机制尚不明确,可能与肥胖伴随的胰岛素抵抗通过胰岛素和胰岛素样生长因子轴导致有丝分裂和抗凋亡信号转导异常相关。此外,肥胖也反映了一种慢性低度炎性反应状态,从而增加息肉癌变的风险[14]

    吸烟是导致结直肠癌的公认的主要风险因素。此前多项研究发现,吸烟与腺瘤性息肉以及晚期肿瘤如浸润性结直肠癌之间存在密切关联[12],这与我们的研究结果类似。每日吸烟数量、吸烟时间与结直肠息肉的风险存在剂量-反应关系[15]。烟草中含有多种致癌物质,先前的研究揭示了一些吸烟与结直肠腺瘤发生的潜在机制,如相关基因的甲基化减少[16]、致癌物代谢酶的基因变异[17]、DNA修复基因EXO1和ATM的多态性[18]、错配修复酶的突变[19]、XPC的多态性[20]等。一项荟萃分析表示,酒精与结直肠腺瘤的风险增加有关,这种关联似乎在欧洲的研究中更为显著[21]。本研究并没有显示酒精对结直肠腺瘤发生的影响,这可能与不同地区研究人群的基因和生活方式差异相关。

    本研究结果表明,MMSE代表的认知功能状态与是否为腺瘤性息肉有显著相关性,而因果关系尚不明确,既往暂无分析认知功能与结直肠腺瘤发生的相关性研究。但已有多项研究表示,结直肠癌、炎性反应性肠病等与认知功能和精神疾病有密切关联,微生物群-肠-脑轴可能在其中起重要作用,肠道微生物群组成失调和肠道屏障功能异常可能参与了重要的病理机制[22]。这一点,未来还需要大样本量的随机对照试验来证实。

    除人群特征外,息肉特征也会影响腺瘤发生的风险。既往有多项研究报道息肉的大小为结直肠息肉恶性肿瘤的独立预测因子[23-24]。直径为1厘米的腺瘤发生腺癌的风险为1%,直径为1~2厘米的腺瘤为10%,而直径大于2厘米的腺瘤发生腺癌的风险为50%[25]。本研究结果表明,息肉大小也为腺瘤病理的独立危险因素。因此,对于直径较大的息肉更应警惕,尽早行内镜下切除以避免发生癌变。本研究中,息肉为平坦型和侧向发育型时较带蒂息肉病理为腺瘤的风险更低,发展为结直肠癌的可能性更小,这与既往的研究结果一致[26]。但近年来,有学者认为扁平息肉可能通过特殊的机制发生进展期肿瘤性病变[27],因此扁平状息肉的潜在恶变可能也需警惕。本研究结果提示位于直肠的息肉多为非腺瘤性息肉。既往研究认为右半结肠腺瘤发生率更高,结直肠癌的发生位置也逐渐向右侧转移[28],这可能与肠内容物在右半结肠中停留时间较长,使致癌物质和炎性反应介质长时间刺激而发展成腺瘤性息肉相关[29-30],但本研究未发现腺瘤性息肉在结肠各节段发生率的差异。

    本研究也存在一些局限性。首先,研究是单中心横断面研究,样本量有限,纳入分析的变量不够全面,可能会遗漏重要的指标。其次,患者的吸烟史、饮酒史、饮食习惯和高血压病史等数据来自自我报告的问卷调查,可能会造成回忆偏倚,从而对结果产生潜在影响。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    张 颖:撰写初稿、文献检索和数据分析
    刘月平:文章整体思路设计和审阅
  • 图  1   使用公共数据库分析Trop2在肿瘤组织和正常组织中的表达情况

    Figure  1   Expression of Trop2 in tumor and normal tissues analyzed using a public database

    图  2   Trop2在细胞中的定位(HPA数据库)

    Figure  2   Trop2 localization in cells (HPA data source database)

    表  1   靶向Trop2的ADC药物戈沙妥珠单抗在不同肿瘤中的临床疗效

    Table  1   Clinical efficacy of ADC drug sacituzumab govitecan targeting Trop2 in different tumors

    TumorDrugPhaseORRTrial
    TNBCSGⅠ/ⅡORR: 33.3% (n=108); mPFS: 5.5 m; mOS: 13.0 mNCT01631552
    HR+/HER2-TNBCSGⅠ/ⅡORR: 31.5% (n=54); mPFS: 5.5 m; mOS: 12 mNCT01631552
    TNBCSGORR: 35% (n=235); mPFS: 5.6 m; mOS: 12.1 m;NCT02574455 (2021)
    HR+/HER2- TNBCSGORR: 21% (n=272); mPFS: 5.5 m; mOS: 14.4 m;NCT03901339
    TNBCSGORR: 64% (n=50); pCR: 30%;NCT04230109
    UCSGORR: 33% (n=25); mPFS: 6.7 m-8.2 m;
    mOS: 7.5 m-11.4 m
    NCT01631552
    UCSGORR: 27% (n=113); mPFS: 5.4 m; mOS: 5.4 mNCT03547973 (Cohort 1)
    UCSGORR: 32% (n=38); mPFS: 5.6 m; mOS: 13.5 mNCT03547973 (Cohort 2)
    UCSG + pembrolizumabORR: 41% (n=17); mPFS: 5.3 m; mOS: 12.7 mNCT03547973 (Cohort 3)
    UCSG + ipilimumab +
    nivolumab
    ORR: 41% (n=9); mPFS: 8.8 mNCT04863885
    NSCLCSGORR: 19% (n=47); mPFS: 5.2 m; mOS: 9.5 mNCT01631552
    SCLCSGORR: 14% (n=47); mPFS: 3.7 m; mOS: 7.5 mNCT01631552
    CRCSGⅠ/ⅡORR: 3.2% (n=31); mPFS: 3.9 m; mOS: 14.2 mNCT01631552
    Notes: TNBC: triple negative breast cancer; UC: urothelial carcinoma; ORR: objective response rate; mPFS: median progression-free survival; mOS: median overall survival; pCR: pathologic complete response; SG: sacituzumab govitecan.
    下载: 导出CSV
  • [1]

    Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834

    [2]

    Will M, Liang J, Metcalfe C, et al. Therapeutic resistance to anti-oestrogen therapy in breast cancer[J]. Nat Rev Cancer, 2023, 23(10): 673-685. doi: 10.1038/s41568-023-00604-3

    [3]

    Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance[J]. Nat Rev Cancer, 2022, 22(3): 157-173. doi: 10.1038/s41568-021-00427-0

    [4]

    Fornaro M, Dell'Arciprete R, Stella M, et al. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas[J]. Int J Cancer, 1995, 62(5): 610-618. doi: 10.1002/ijc.2910620520

    [5]

    Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer, 2010, 9: 253. doi: 10.1186/1476-4598-9-253

    [6]

    Guan H, Guo Z, Liang W, et al. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways[J]. BMC Cancer, 2017, 17(1): 486. doi: 10.1186/s12885-017-3475-2

    [7]

    Fong D, Moser P, Krammel C, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer[J]. Br J Cancer, 2008, 99(8): 1290-1295. doi: 10.1038/sj.bjc.6604677

    [8]

    Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer[J]. Pharmacol Ther, 2022, 239: 108296. doi: 10.1016/j.pharmthera.2022.108296

    [9]

    Dumontet C, Reichert JM, Senter PD, et al. Antibody-drug conjugates come of age in oncology[J]. Nat Rev Drug Discov, 2023, 22(8): 641-661. doi: 10.1038/s41573-023-00709-2

    [10]

    Tsuchikama K, Anami Y, Ha SYY, et al. Exploring the next generation of antibody-drug conjugates[J]. Nat Rev Clin Oncol, 2024, 21(3): 203-223. doi: 10.1038/s41571-023-00850-2

    [11]

    Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors[J]. Annu Rev Med, 2024, 75: 31-48. doi: 10.1146/annurev-med-071322-065903

    [12]

    Vidula N, Yau C, Rugo H. Trophoblast Cell Surface Antigen 2 gene (TACSTD2) expression in primary breast cancer[J]. Breast Cancer Res Treat, 2022, 194(3): 569-575. doi: 10.1007/s10549-022-06660-x

    [13]

    Aslan M, Hsu EC, Garcia-Marques FJ, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141. doi: 10.1038/s41523-021-00341-6

    [14]

    Mertens RB, Makhoul EP, Li X, et al. Comparative expression of trophoblast cell-surface antigen 2 (TROP2) in the different molecular subtypes of invasive breast carcinoma: An immunohistochemical study of 94 therapy-naive primary breast tumors[J]. Ann Diagn Pathol, 2024, 68: 152226. doi: 10.1016/j.anndiagpath.2023.152226

    [15]

    Lin H, Huang JF, Qiu J R, et al. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer[J]. Exp Mol Pathol, 2013, 94(1): 73-78. doi: 10.1016/j.yexmp.2012.08.004

    [16]

    Izci H, Punie K, Waumans L, et al. Correlation of TROP-2 expression with clinical-pathological characteristics and outcome in triple-negative breast cancer[J]. Sci Rep, 2022, 12(1): 22498. doi: 10.1038/s41598-022-27093-y

    [17]

    Ambrogi F, Fornili M, Boracchi P, et al. Trop-2 is a determinant of breast cancer survival[J]. PLoS One, 2014, 9(5): e96993. doi: 10.1371/journal.pone.0096993

    [18]

    Omori S, Muramatsu K, Kawata T, et al. Trophoblast cell-surface antigen 2 expression in lung cancer patients and the effects of anti-cancer treatments[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2455-2463. doi: 10.1007/s00432-021-03784-3

    [19]

    Mito R, Matsubara E, Komohara Y, et al. Clinical impact of TROP2 in non-small lung cancers and its correlation with abnormal p53 nuclear accumulation[J]. Pathol Int, 2020, 70(5): 287-294. doi: 10.1111/pin.12911

    [20]

    Inamura K, Yokouchi Y, Kobayashi M, et al. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes[J]. Oncotarget, 2017, 8(17): 28725-28735. doi: 10.18632/oncotarget.15647

    [21]

    Ohmachi T, Tanaka F, Mimori K, et al. Clinical significance of TROP2 expression in colorectal cancer[J]. Clin Cancer Res, 2006, 12(10): 3057-3063. doi: 10.1158/1078-0432.CCR-05-1961

    [22]

    Moretto R, Germani MM, Giordano M, et al. Trop-2 and Nectin-4 immunohistochemical expression in metastatic colorectal cancer: searching for the right population for drugs' development[J]. Br J Cancer, 2023, 128(7): 1391-1399.

    [23]

    Mühlmann G, Spizzo G, Gostner J, et al. TROP2 expression as prognostic marker for gastric carcinoma[J]. J Clin Pathol, 2009, 62(2): 152-158. doi: 10.1136/jcp.2008.060590

    [24]

    Sun H, Chen Q, Liu W, et al. TROP2 modulates the progression in papillary thyroid carcinoma[J]. J Cancer, 2021, 12(22): 6883-6893. doi: 10.7150/jca.62461

    [25]

    Mas L, Cros J, Svrcek M, et al. Trop-2 is a ubiquitous and promising target in pancreatic adenocarcinoma[J]. Clin Res Hepatol Gastroenterol, 2023, 47(4): 102108. doi: 10.1016/j.clinre.2023.102108

    [26]

    Hoppe S, Meder L, Gebauer F, et al. Trophoblast Cell Surface Antigen 2 (TROP2) as a Predictive Bio-Marker for the Therapeutic Efficacy of Sacituzumab Govitecan in Adenocarcinoma of the Esophagus[J]. Cancers (Basel), 2022, 14(19): 4789. doi: 10.3390/cancers14194789

    [27]

    Wu B, Yu C, Zhou B, et al. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells[J]. Exp Ther Med, 2017, 14(3): 1947-1952. doi: 10.3892/etm.2017.4788

    [28]

    Erber R, Spoerl S, Mamilos A, et al. Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma[J]. Int J Mol Sci, 2021, 23(1): 87. doi: 10.3390/ijms23010087

    [29]

    Liu T, Liu Y, Bao X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013, 8(9): e75864. doi: 10.1371/journal.pone.0075864

    [30]

    Lin JC, Wu YY, Wu JY, et al. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma[J]. EMBO Mol Med, 2012, 4(6): 472-485. doi: 10.1002/emmm.201200222

    [31]

    Remšík J, Binó L, Kahounová Z, et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition[J]. Carcinogenesis, 2018, 39(11): 1411-1418. doi: 10.1093/carcin/bgy095

    [32]

    Guerra E, Trerotola M, Aloisi AL, et al. The Trop-2 signalling network in cancer growth[J]. Oncogene, 2013, 32(12): 1594-1600. doi: 10.1038/onc.2012.151

    [33]

    Mori Y, Akita K, Ojima K, et al. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility[J]. J Biol Chem, 2019, 294(30): 11513-11524. doi: 10.1074/jbc.RA119.008084

    [34]

    Wang M, Guo Y, Wang M, et al. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation[J]. Mol Cell Proteomics, 2017, 16(6): 982-997. doi: 10.1074/mcp.M116.065797

    [35]

    Tang W, Hu Y, Tu K, et al. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop[J]. J Adv Res, 2024, 58: 193-210. doi: 10.1016/j.jare.2023.05.012

    [36]

    Sun X, Jia L, Wang T, et al. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment[J]. J Cancer, 2021, 12(17): 5310-5319. doi: 10.7150/jca.57711

    [37]

    Yang T, Jia L, Bian S, et al. TROP2 Down-regulated DSG2 to Promote Gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/β-Catenin Pathways[J]. Curr Cancer Drug Targets, 2022, 22(8): 691-702. doi: 10.2174/1568009622666220407111013

    [38]

    Tang G, Tang Q, Jia L, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway[J]. Int J Mol Med, 2019, 44(6): 2161-2170.

    [39]

    Gu Q Z, Nijiati A, Gao X, et al. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling[J]. Mol Med Rep, 2018, 18(2): 1782-1788.

    [40]

    Li X, Teng S, Zhang Y, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT[J]. Oncotarget, 2017, 8(29): 47052-47063. doi: 10.18632/oncotarget.16789

    [41]

    Wang Z, Jia L, Sun Y, et al. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer[J]. Front Mol Biosci, 2021, 8: 682594. doi: 10.3389/fmolb.2021.682594

    [42]

    Liu X, Li J, Deng J, et al. Targeting Trop2 in solid tumors: a look into structures and novel epitopes[J]. Front Immunol, 2023, 14: 1332489. doi: 10.3389/fimmu.2023.1332489

    [43]

    Guerra E, Relli V, Ceci M, et al. Trop-2, Na(+)/K(+) ATPase, CD9, PKCα, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion[J]. Oncogene, 2022, 41(12): 1795-1808. doi: 10.1038/s41388-022-02220-1

    [44]

    Sun M, Zhang H, Jiang M, et al. Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2[J]. iScience, 2021, 24(10): 103190. doi: 10.1016/j.isci.2021.103190

    [45]

    Shih LB, Xuan H, Aninipot R, et al. In vitro and in vivo reactivity of an internalizing antibody, RS7, with human breast cancer[J]. Cancer Res, 1995, 55(23 Suppl): 5857s-5863s.

    [46]

    Alberti S, Miotti S, Stella M, et al. Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2[J]. Hybridoma, 1992, 11(5): 539-545. doi: 10.1089/hyb.1992.11.539

    [47]

    Trerotola M, Guerra E, Ali Z, et al. Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis[J]. Neoplasia, 2021, 23(4): 415-428. doi: 10.1016/j.neo.2021.03.006

    [48]

    Truong A, Feng N, Sayegh D, et al. AR47A6.4. 2, a naked monoclonal antibody targeting Trop-2, exhibits anti-tumor efficacy in multiple human cancer models as a monotherapeutic agent and demonstrates efficacy in combination therapy[J]. Cancer Res, 2008, 68(9_Supplement): Abstract 3990.

    [49]

    Ikeda M, Yamaguchi M, Kato K, et al. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope[J]. Biochem Biophys Res Commun, 2015, 458(4): 877-882. doi: 10.1016/j.bbrc.2015.02.051

    [50]

    Ikeda M, Kato K, Yamaguchi M, et al. Cell Surface Antibody Retention Influences In Vivo Antitumor Activity Mediated by Antibody-dependent Cellular Cytotoxicity[J]. Anticancer Res, 2016, 36(11): 5937-5944. doi: 10.21873/anticanres.11181

    [51]

    Syed YY. Sacituzumab Govitecan: First Approval[J]. Drugs, 2020, 80(10): 1019-1025. doi: 10.1007/s40265-020-01337-5

    [52]

    Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2019, 380(8): 741-751. doi: 10.1056/NEJMoa1814213

    [53]

    Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2021, 384(16): 1529-1541. doi: 10.1056/NEJMoa2028485

    [54]

    Bardia A, Rugo HS, Tolaney SM, et al. Final Results From the Randomized Phase Ⅲ ASCENT Clinical Trial in Metastatic Triple-Negative Breast Cancer and Association of Outcomes by Human Epidermal Growth Factor Receptor 2 and Trophoblast Cell Surface Antigen 2 Expression[J]. J Clin Oncol, 2024, 42(15): 1738-1744. doi: 10.1200/JCO.23.01409

    [55]

    Rugo HS, Bardia A, Marmé F, et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet, 2023, 402(10411): 1423-1433. doi: 10.1016/S0140-6736(23)01245-X

    [56]

    Spring LM, Tolaney SM, Fell G, et al. Response-guided neoadjuvant sacituzumab govitecan for localized triple-negative breast cancer: results from the NeoSTAR trial[J]. Ann Oncol, 2024, 35(3): 293-301. doi: 10.1016/j.annonc.2023.11.018

    [57]

    Heist RS, Guarino MJ, Masters G, et al. Therapy of Advanced Non-Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan[J]. J Clin Oncol, 2017, 35(24): 2790-2797. doi: 10.1200/JCO.2016.72.1894

    [58]

    Gray JE, Heist RS, Starodub AN, et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan[J]. Clin Cancer Res, 2017, 23(19): 5711-5719. doi: 10.1158/1078-0432.CCR-17-0933

    [59]

    McGregor BA, Sonpavde GP, Kwak L, et al. The Double Antibody Drug Conjugate (DAD) phase Ⅰ trial: sacituzumab govitecan plus enfortumab vedotin for metastatic urothelial carcinoma[J]. Ann Oncol, 2024, 35(1): 91-97.

    [60]

    Liu T, Si X, Liu L, et al. Injectable Nano-in-Gel Vaccine for Spatial and Temporal Control of Vaccine Kinetics and Breast Cancer Postsurgical Therapy[J]. ACS Nano, 2024, 18(4): 3087-3100. doi: 10.1021/acsnano.3c08376

    [61]

    Jia L, Fu Y, Zhang N, et al. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma[J]. Nanomedicine, 2023, 51: 102687. doi: 10.1016/j.nano.2023.102687

图(2)  /  表(1)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  396
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-09-20
  • 录用日期:  2024-10-22
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭