-
摘要:
以免疫检查点抑制剂(ICIs)为代表的免疫治疗在给恶性肿瘤患者带来良好疗效的同时,也可能会导致免疫相关不良事件(irAEs)。已有较多的国内外指南或共识指导临床医师有效解决绝大多数irAEs。然而irAEs的定义和判定、时间规律、个体差异、激素和免疫抑制剂使用、irAEs与疗效的关系、免疫重启、特殊人群等问题仍有待进一步探讨,重症型、难治性和多重irAEs的识别和处理仍待进一步解决。本文梳理了irAEs的十个热点问题并逐一进行解析,以期给临床医师带来帮助。
Abstract:Immunotherapy, represented by immune checkpoint inhibitors, may lead to immune-related adverse events (irAEs) while demonstrating favorable efficacy in patients with malignant tumors. Many domestic and international guidelines or consensus have been established to assist clinicians in effectively managing the majority of irAEs. However, further exploration about irAEs is required regarding the definition and determination, temporal patterns, individual variances, utilization of hormones and immunosuppressants, correlation between irAEs and therapeutic outcomes, immune reactivation, and special populations. The identification and management of severe, refractory, and multiple irAEs necessitate additional solutions. This paper aims to clarify 10 prominent issues concerning irAEs individually and provide assistance for clinicians.
-
0 引言
近年来,以免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)为代表的免疫治疗引领了恶性肿瘤的治疗方向,深刻改变了大部分恶性肿瘤治疗的临床实践。然而,在给患者带来生存获益的同时,伴随而来很多新问题,其中又以免疫相关不良事件(immune-related adverse events, irAEs)最为突出。自2017年起,国内外各级组织先后出版了多版指南或共识,用于指导irAEs的识别和管理;其中,中国临床肿瘤学会(Chinese Society of Clinical Oncology, CSCO)自2019年起隔年出版《ICIs相关的毒性管理指南》[1],受到广泛好评。然而,在此领域,仍有较多的机制和规律有待进一步探讨或寻找,有很多的临床问题尚待我们去认识和解决[2-4]。为此,本文梳理了irAEs的十个热点问题并逐一进行解析,以期给临床医师带来帮助。
1 如何判定irAEs?
1.1 irAEs的定义
在药物不良反应(adverse drug reaction, ADR)领域,不同的文献或临床研究对其有不同的描述或定义,至少包括不良反应(adverse effects, AEs)、ADR、治疗中出现的不良事件(treatment-emergent adverse events, TEAEs)、治疗相关不良事件(treatment-related adverse events, TRAEs)、irAEs和免疫介导的不良事件(immune-mediated adverse events, imAEs)等。这些专业术语的涵义既存在交集也有一定的差异,其中部分可按如下排列:AEs>TEAEs>TRAEs>ADR>irAEs。2022年5月,国家药品监督管理局(National Medical Products Administration, NMPA)发布的《抗肿瘤治疗的免疫相关不良事件评价技术指导原则》建议采用irAEs,并将其定义为抗肿瘤药物和(或)治疗临床试验中,经判定与免疫机制有因果关系的所有级别的药物不良反应;虽然称为免疫相关“不良事件”,但irAEs实际是抗肿瘤药物作用机制导致的免疫机制介导引起的“不良反应”。
1.2 irAEs的判定
根据NMPA发布的《抗肿瘤治疗的免疫相关不良事件评价技术指导原则》,判定irAEs除了要考虑判定ADR的7种因素[即事件与治疗的时间相关性、生物学合理性、去激发或再激发试验结果(如有)、试验组与对照组之间AEs发生率的比较、药理学和(或)毒理学数据支持、剂量—暴露量—事件相关性(如有),以及同靶点药物不良反应]之外,但还得另外参考若干条标准。其中,需要重点强调以下三点:
排他性诊断:首先要排除其他病因,要与临床表现相似的非免疫事件的重要临床表现进行鉴别诊断,如免疫相关性肺炎需与细菌性肺炎、病毒性肺炎、卡氏肺孢子虫肺炎、放射性肺炎等鉴别。其次,需要排除其他可导致目标AEs的合理解释,例如感染、肿瘤进展、合并用药的AEs及基础疾病表现等。
双重判定:临床研究对irAEs的判定流程尤其严格。研究者通常基于医疗经验首先进行irAEs判定;在此基础上,申办者按照预先设定的流程进一步评价汇总,并基于既往临床试验中获得的经验再次进行判定。只有研究者和申办者达成一致,才能最终将AEs认定为irAEs。
疑罪从“有”:在免疫治疗联合非免疫治疗中,如果免疫与非免疫治疗具有相似的AEs特征(如免疫和靶向均可能导致甲状腺功能减退、免疫和化疗均可能导致血小板减少等),经充分医学评价仍无法确定所观察到的AEs是irAEs还是非irAEs,须用保守方法,将AEs视为 irAEs,不应仅依据两者特征相似,而排除 irAEs。
2 irAEs是否呈剂量依赖性?
与化疗相关AEs不同,irAEs的发生与药物作用机制有关,激活的免疫系统不仅作用于肿瘤,还可能作用于身体其他组织。其中,细胞毒性T淋巴细胞相关抗原-4(cytotoxic T-lymphocyte-associated antigen 4, CTLA-4)单抗的irAEs呈剂量依赖性[5],如当伊匹木单抗给药剂量从3 mg/kg增至10 mg/kg时,irAEs的发生率从29%增加到46%;而程序性细胞死亡受体 1(programmed cell death-1, PD-1)或程序性细胞死亡受体配体1(programmed cell death-ligand 1, PD-L1)单抗的irAEs既无剂量依赖性,也非周期依赖性[6]。因此,试图通过降低PD-1或PD-L1单抗的剂量来达到减少irAEs的发生并不可行。irAEs出现后通常可能需要停药,并给予积极治疗。
3 irAEs何时发生?
3.1 急性irAEs
关于irAEs发生的时间规律,目前并不完全清楚。多数irAEs在治疗2~16周内出现,可被称为急性irAEs,当然,也有数天内及治疗结束≥1年后发生的irAEs[7]。治疗前4周内首次出现irAEs的风险比4周至治疗结束期间高3倍。不同药物的irAEs出现时间规律不同。目前临床上多采用ICIs联合治疗,因此irAEs的发生率和严重程度增加、出现时间提前[3]。大部分irAEs为可逆性,能在短期内恢复;在所有的irAEs中,内分泌毒性需要的恢复时间最长。
3.2 延迟发生的irAEs
延迟发生的irAEs是指接受免疫治疗开始一年后发生的irAEs,其中七成以上患者发生这些irAEs时还在接受免疫治疗,而另一些患者则发生在免疫治疗结束后;以免疫性结肠炎、皮疹、肺炎等最为常见[8]。无论此前是否发生过irAEs,患者都有可能出现延迟发生的irAEs。对几个病例报告的联合分析发现,延迟性irAEs可能会在治疗后的3~28个月内发生,并可能影响多个器官[8]。
3.3 慢性irAEs
由于T细胞自反应性克隆有可能在治疗停止后很久才出现,因此irAEs有可能在治疗结束多年后出现。慢性irAEs是指在免疫治疗结束(也有文章定义为结束3个月)后,还有部分患者会发生持续12周以上的irAEs,发生率约为43.2%。最常见的慢性irAEs是内分泌毒性和风湿毒性,其他还包括神经系统疾病、皮炎、肺炎等[9]。慢性irAEs一般无法通过治疗消除,可能源自两种不同的机制:耗竭和“慢燃”炎症。“耗竭”是指相关细胞的不可逆损伤,无法生理性恢复,如甲状腺功能减退、垂体炎、1型糖尿病等,即使早期使用高剂量糖皮质激素也无法恢复,通常需要使用外源性激素替代;周围神经病变、口干症也可能属于这一类。相比之下,“慢燃”炎症可能更类似于经典的自身免疫性疾病,ICIs可引发持续的亚急性或慢性炎症。典型例子包括ICIs相关的炎症性关节炎,其多关节受累与许多患者的类风湿性关节炎非常相似,所有受影响的患者中约有一半会演变为慢性病。
3.4 致命性irAEs
最新数据显示,致命的irAEs依次是心肌炎(27.6%)、肌无力(23.1%)、严重皮肤AEs(22.1%)、肌炎(21.9%)和肺炎(21%)等;2020年后,致命毒性的发生率普遍下降,但肌无力和严重皮肤AEs除外[10]。致命性irAEs多在治疗的早期发生,尤其是在第一次使用ICIs之后,联合治疗导致其发生时间进一步提前。PD-1/PD-L1单抗单药和联合治疗导致致命性irAEs的中位时间分别为40天和15天。不同药物的致命性irAEs谱可能不同,如CTLA-4单抗(结肠炎)、PD-1/PD-L1单抗(肺炎、肝炎、神经毒性)和联合治疗(结肠炎、心肌炎)。致命性irAEs还有多器官同时发生、多见于老年患者等特点。这部分患者的器官功能储备下降可能与死亡风险增加有关。长时间的免疫抑制可能导致长期、难治性的不良事件,是造成患者死亡的直接原因,机会性感染的存在也可能使临床过程复杂化。
3.5 长期心血管后遗症
长时间的ICIs治疗,理论上可能会在很长的时间内影响多种不同的病理生物学过程,包括动脉粥样硬化、肥胖、神经系统炎症、生育能力受损等。越来越多的证据表明,接受ICIs治疗后心血管并发症的风险增加,其中主要是冠状动脉粥样硬化性疾病和非缺血性左心室功能障碍[4]。然而,目前文献报告的估计值可能低估了真实世界的风险,原因包括心血管事件报告不足、随访时间相对较短以及临床试验与真实世界相比纳入标准严格会导致选择偏倚。高敏肌钙蛋白被认为是一种潜在的监测生物标志物,可及早发现亚临床病例,但支持其常规使用的数据有限。因此,对于曾接受过ICIs治疗的患者,有必要制定基于风险的心血管风险监测和管理策略。
4 irAEs发生有无个体差异?
几乎各个器官和系统均可发生irAEs,但最常受累组织是机体屏障组织,如皮肤、胃肠道、肝脏以及呼吸道上皮。除此之外,内分泌器官发生irAEs也较为常见。最新的国外研究提示,最常见的irAEs包括皮肤反应(22.9%)、肺炎(18.5%)、肠炎(14.4%)和甲状腺炎(12.1%)等[10]。
4.1 瘤种、药物等与irAEs的关系
(1)瘤种。不同瘤种在接受ICIs治疗后出现的irAEs不完全相同。胸腺肿瘤较易出现肌毒性(肌炎、心肌炎和重症肌无力样综合征)、肝炎,恶性黑色素瘤通常出现白癜风、葡萄膜炎或结节病等。对比接受ICIs治疗的黑色素瘤、非小细胞肺癌(non-small cell lung cancer, NSCLC)和肾细胞癌患者发现,黑色素瘤患者更容易出现胃肠道和皮肤irAEs,而NSCLC和肾细胞癌患者更易患肺炎。(2)药物。PD-1单抗更易导致免疫性肺炎、肌痛、甲减、关节痛和白癜风等;CTLA-4单抗易导致结肠炎、垂体炎、皮炎;而淋巴细胞活化基因-3(lymphocyte activation gene-3, LAG-3)抗体容易导致脑膜炎。(3)人种。东亚人更易出现胆管炎。(4)治疗类型。有研究认为(新)辅助免疫治疗早中期肿瘤的irAEs发生率高于免疫治疗晚期肿瘤,但机制不清且并非定论[4,10]。
4.2 哪种ICIs更安全?
由于缺乏头对头的研究,目前很难判定哪个ICIs的irAEs的发生率更低,严重程度更高。根据CSCO《ICIs相关的毒性管理指南》以及我们的临床经验,可将irAEs的发生率和严重程度大致排序如下:免疫联合免疫>CTLA-4单抗> PD-1/PD-L1单抗联合化疗>PD-1/PD-L1单抗+抗血管生成药物>PD-1单抗> PD-L1单抗。笔者认为,PD-L1单抗与PD-1单抗比较,总体安全性相似;但在免疫性肺炎方面,有非头对头的研究显示,PD-L1单抗所致的irAEs似乎更低,但此结果仍需要进一步的研究予以证实[11]。
4.3 缺乏有效的生物标志物
生物标志物一直是免疫治疗领域的研究热点之一,包括疗效预测和毒性预测等方面。2020年,笔者曾发表综述,认为irAEs缺乏有效的生物标志物[12]。研究中的标志物包括外周血细胞、细胞因子、肿瘤基因组学、自身抗体和粪便微生物学等,但迄今为止,这些标志物与irAEs间的相互关系均来自回顾性研究,目前还没有一种生物标志物能为临床所用或被FDA批准,且试图用一种标志物解决所有问题似乎并不可行。然而,有些特定的预测标志物和高危人群值得我们关注,比如年龄较大、身体状态较差、肿瘤负荷程度比较高的患者更容易发生irAEs,且控制效果不佳[13]。
4.4 警惕少见或罕见irAEs
随着ICIs的普及,国内外指南或共识上提及的少见或罕见毒性,均已变得较为常见。在笔者的临床工作中,经常能遇到一些指南或共识几乎不曾提及的irAEs,或者仅有案例报道的irAEs,包括失明、高热、口腔炎、骨愈合延迟、纳差、淋巴细胞减少、嗜酸性粒细胞增多、血小板减少、耳毒性、性功能亢进、男性乳腺发育、肢端坏死、静坐不能、疲乏、嗜血综合征等。这些AEs可能是罕见的irAEs,需要临床医生进行细致筛查和鉴别。
5 如何正确使用激素?
国内外多项指南或共识均一致推荐糖皮质激素±麦考酚酯(mycophenolate mofetil, MMF)作为大多数irAEs的一线治疗。CSCO免疫治疗专家委员会近年来也先后推出了多部指南、共识或手册,给了中国医师很大的帮助和指导,但是在激素使用等方面,仍存在较多的问题值得我们关注。
5.1 早期、足量使用中效激素
一旦确定或可疑为irAEs,早期激素干预可明显改善预后。几乎在所有的情况下,首选中效制剂,如甲基强的松龙或强的松。不选地塞米松的原因包括:(1)地塞米松会对肾上腺垂体轴产生生理性抑制;(2)长期使用地塞米松的不良反应大。在足量使用的基础上,如需要调整剂量,激素通常采用“缓升”的方法,即在几天内无反应时,可尝试增加剂量和(或)选择二线免疫抑制剂。
5.2 一般不影响免疫治疗疗效
目前缺乏确切的临床证据证明因为irAEs使用糖皮质激素对ICIs治疗疗效存在不利影响,所以可以放心大胆使用。不过,长期较高剂量地使用糖皮质激素可能对治疗有负性影响。此外,目前尚不主张预防性使用激素或其他免疫抑制剂来避免irAEs的发生。
5.3 减量太快容易出现病情反弹
糖皮质激素减量应逐步进行(>4周,有时需6~8周或更长时间),特别是在治疗免疫性肺炎和肝炎之时;如减量太快,病情容易出现反弹。减量起点通常选择irAEs恢复至G1级或基线水平之时。若症状改善,可按每周5~10 mg递减。如果初始剂量较大且症状改善较快,可视具体情况灵活减量。如果在激素正常减量的过程中出现病情反弹,可酌情加用其他免疫抑制剂。少部分患者可能出现激素不能全部撤除的情况,称为激素依赖性irAEs[14]。
5.4 大剂量激素冲击治疗的使用
根据2023版CSCO《ICIs相关的毒性管理指南》及笔者经验,建议在以下情况考虑使用500~1 000 mg/d的甲基强的松龙:(1)G2级以上心脏毒性;(2)严重的神经毒性,如格林巴利综合征、免疫相关性脑炎、横断性脊髓炎、自主神经病变等;(3)严重的多重毒性。国内外指南推荐在大剂量激素使用三天后恢复到常规剂量,如1~2 mg/(kg·d),再按常规减量。此外,应避免反复使用大剂量激素进行冲击治疗。
6 如何处理重症型、难治性和多重irAEs?
重症型、难治性或多重irAEs一直是国内外各种指南较少提及的领域,更是临床医师觉得非常棘手的问题。2023版CSCO《ICIs相关的毒性管理指南》曾在附录部分给过建议,但仍难满足临床的需求。
6.1 重症型irAEs的治疗
对于重症型irAEs患者,尤其是影响到心脏、肺、肝脏、结肠和神经肌肉系统的irAEs,建议进行免疫组织病理学检测,同时展开针对irAEs发病机制的系统分析,为后续的irAEs靶向治疗提供初步指导;同时irAEs应强调多学科综合治疗(multidisciplinary treatment, MDT)[15]。但这在国内似乎并不可行。首先,患者难同意。几乎没有患者在出现严重irAEs后会同意医师去做活检;第二,时间不允许。等医师把发生机制搞清楚,患者或许早已死亡;第三,现状难支持。虽然CSCO免疫治疗专家委员会强烈推荐MDT[16],但国内大部分医院并没有针对irAEs的MDT,因此建议可以由呼吸、消化、免疫、内分泌等专家组成的临时团队进行会诊。缘自对irAEs机制的认识不断加深,笔者建议“降阶梯”应用免疫抑制剂,即以糖皮质激素±MMF为基础,联用另外的作用机制不同的免疫抑制剂(表1)[14-15,17],待毒性好转之后,再考虑减量或减少药物种类。
表 1 用于治疗irAEs的常见免疫抑制剂和方法Table 1 Immunosuppressants and methods commonly used for irAEsTreatment Indications* Mechanism Cautions Non-specific immunosuppressants Glucocorticosteroid All irAEs Broad-spectrum anti-inflammatory and non-specific immunosuppressive effects, including the suppression of cellular and humoral immunity Excludes some endocrine toxicities Mycophenolate Mofetil (MMF) All irAEs, especially steroid-refractory irAEs Inhibition of T and B cell proliferation by depleting guanine nucleotides 500-1000 mg, twice daily Targeting T lymphocytes Immunoglobulin (IVIG) Severe, refractory, or multiple irAEs, including Guillain-Barré syndrome, myasthenia gravis, myositis, encephalitis, demyelinating lesions, bullous rash, SJS/TEN, DRESS, thrombocytopenia, pneumonia Induction of autoreactive T cell inactivation, regulation of cytokine production, downregulation of B cell activation and antibody production, interference with complement activation, inhibition of macrophages and dendritic cells, neutralization of pathogenic autoantibodies through anti-idiotypic antibodies 0.4 g/(kg·d) for 3-5 d, repeatable every 28 d Tacrolimus Hepatotoxicity, hematotoxicity, cardiovascular toxicity Calcineurin inhibitor, suppresses T cell activation 0.1-0.2 mg/(kg·d); requires concentration monitoring Cyclosporine Hepatotoxicity, hematotoxicity, nephrotoxicity Calcineurin inhibitor, inhibits the production of T cell activation factor IL-2 Requires concentration monitoring Anti-thymocyte globulin(ATG) Hepatotoxicity, hematotoxicity, cardiotoxicity Complement-dependent cytotoxicity induces T cell consumption 30 mg/kg, alternate-day dosing, for 6 doses Alemtuzumab Myocarditis Targets CD52 expressed on mature lymphocytes, monocytes, and natural killer cells, leading to severe depletion of these cells Not specified Abatacept Myocarditis Soluble CTLA-4 fusion protein, induces T cell inactivation 500-1000 mg, once a week on the 0, 2nd, and 4th week, then 300 mg, once every 4 weeks Vedolizumab Gastrointestinal toxicity, associated hepatitis Blocks integrin α4β7 expressed on gut epithelial cells, reducing T cell infiltration 300 mg, once a week on the 0, 2nd and 6th week, then once every 8 weeks Natalizumab Encephalitis Blocks integrin α4 expressed on the blood-brain barrier, reducing T cell infiltration Not specified Methotrexate (MTX) Myositis, arthritis Inhibits T cell nucleic acid and protein synthesis Low dose, once every 12 hours, for 3 times; repeat weekly Cyclophosphamide (CTX) Hematotoxicity Inhibits T cell nucleic acid and protein synthesis 0.4 g, once a week; repeat weekly Targeting B lymphocytes and antibodies Rituximab Hematotoxicity (especially thrombocytopenia), neurotoxicity (especially myasthenia gravis, aseptic meningitis, encephalitis), renal vasculitis, bullous dermatitis, hepatotoxicity Targets CD20, induces B cell depletion 375 mg/m2, once a week; repeat weekly Plasmapheresis Severe, refractory, or multiple irAEs, especially 3M syndrome (myasthenia gravis, myositis, myocarditis), Guillain-Barré syndrome, encephalitis, transverse myelitis, cholangitis with autoimmune hepatitis, hematotoxicity Removes pathogenic autoantibodies 3-5 sessions; if used in combination with IVIG, should be done before IVIG Targeting cytokines Infliximab Gastrointestinal toxicity, arthritis, pneumonia, hematotoxicity, nephrotoxicity, myocarditis, ocular toxicity, ototoxicity, bladder toxicity Targets TNF-α 5 mg/kg, once a week on the 1st, 2nd, and 6th week Adalimumab Gastrointestinal toxicity, arthritis Targets TNF-α 40 mg, every other week Etanercept Gastrointestinal toxicity, arthritis Targets TNF-α 25 mg, every three days, with the first dose doubled Tocilizumab Pulmonary toxicity, rheumatism, neurotoxicity, hepatotoxicity, hematotoxicity, cardiovascular toxicity, dermatotoxicity Targets IL-6 8 mg/kg, every 4 weeks Omalizumab Dermatotoxicity Targets IgE According to the instructions Anakinra Targets IL-1 100 mg, once a day Secukinumab Targets IL-17 300 mg, once a week, on the 0, 1st, 2nd, 3th, 4th week, then once every 4 weeks Ustekinumab Targets IL-12/IL-23 260 mg (≤55 kg), 390 mg
(>55-85 kg), 520 mg (≥85 kg)Mepolizumab Targets IL-5 300 mg, once every 4 weeks Targeting signal pathways Tofacitinib Cardiotoxicity Targets JAK-STAT pathway 5 mg, twice a day Sirolimus Eosinophilia Targets mTOR pathway 5 mg, once orally, then 3 mg, once a day, titrated to therapeutic levels Note: *: Indications are not limited to the symptoms listed. 6.2 难治性irAEs的治疗
使用标准剂量的糖皮质激素治疗≥3天后患者症状仍持续,通常判定为激素无效、抵抗或难治性irAEs[3],发生率约为10%。此时可考虑如下策略(表1):(1)升级治疗,即将激素加量;(2)加用或联用免疫调节剂,如免疫球蛋白(即丙球);(3)加用或联用其他免疫抑制剂;(4)加用或联用血浆置换。
6.3 多重irAEs的治疗
多重毒性,又称为多脏器毒性或复合毒性,为影响两个及以上器官系统的irAEs,但也有人建议将累及同一系统不同器官组织的多个irAEs也视为多系统毒性,如多个内分泌腺体的疾病[3]。据文献报道,单药ICIs导致多重毒性的发生率约为5%~15%,免疫联合治疗将发生率提升至26%~40%。在临床上碰到多重毒性时,建议根据前文所述的“降阶梯”原则,首选“大剂量激素+MMF+丙球或血浆置换”的“三板斧”疗法,同时酌情使用表1中的其他手段或药物。
7 激素或免疫抑制剂有无非预期效应?
7.1 使用激素的非预期效应
长期使用激素虽然对免疫治疗疗效一般不会产生负面影响,但却可能会导致部分非预期效应,如机会性感染、血糖升高、消化道溃疡、骨质疏松、情绪障碍、失眠、体重增加等。因此建议[1]:(1)对长期使用糖皮质激素(泼尼松>20 mg/d或相当剂量,持续4周以上)的患者,针对性予以预防耶氏肺孢子菌肺炎的措施;(2)对更长时间使用糖皮质激素(泼尼松>20 mg/d或相当剂量,持续6~8周以上)的患者,还要考虑使用抗真菌药物来预防真菌性肺炎;(3)如果正在使用解热镇痛药或抗凝药物,推荐同时使用质子泵抑制剂或H2受体阻滞剂治疗;(4)若有发生骨质疏松症的风险,推荐口服补充维生素D和钙片预防骨质疏松症;(5)监测血糖。
7.2 使用免疫抑制剂的非预期效应
尽管单克隆抗体等药物对重症型、难治性或多重irAEs有益,但它们可能引起特定的不良反应,因此不推荐或谨慎用于某些irAEs(表2)[14-15]。
表 2 部分免疫抑制剂潜在不良反应Table 2 Potential side effects of some immunosuppressantsTarget Drug Potential side effects Not recommended (or cautious) use TNF Infliximab Hepatotoxicity, cardiotoxicity, heart failure,
exacerbation of interstitial lung disease,
activation of hepatitis viruses and tuberculosis,
leukopenia, infectionHepatitis, cardiotoxicity, pneumonia TNF Etanercept Inflammatory bowel disease,
exacerbation of interstitial lung diseaseHepatitis, colitis, pneumonia IL-6 Tocilizumab Gastrointestinal perforation,
bone marrow suppressionColitis, hematotoxicity IL-1 Anakinra Leukopenia Hematotoxicity IL-17 Secukinumab Diarrhea Colitis IL-12/IL-23 Ustekinumab Reversible posterior
leukoencephalopathy syndromeNeurotoxicity JAK-STAT Tofacitinib Colitis, bone marrow suppression,
cardiac conduction delay, thrombosisColitis, hematotoxicity, cardiotoxicity mTOR Sirolimus Pneumonia, hyperglycemia Pneumonia, diabetes IVIG Rash, acute kidney injury, thrombosis Nephrotoxicity, etc. ATG Allergic reactions, hepatitis, acute kidney injury,
hematotoxicity (thrombocytopenia, hemolysis)Hepatitis, nephrotoxicity, hematotoxicity 7.3 联用激素+免疫抑制剂会影响生存吗?
目前对这个问题尚无定论。有研究发现,在纳武利尤单抗联合伊匹木单抗一线治疗晚期黑色素瘤时,没有发生≥3级irAEs者预后更差;在处理≥3级irAEs时,与使用激素+其他免疫抑制剂相比,单独使用激素者预后更好[18]。然而,也有研究认为两者联用处理irAEs并不影响患者生存。该研究根据治疗方法分为单独激素、激素加免疫抑制剂、不使用激素或免疫抑制剂组,发现单独采用激素治疗的患者的总生存期(overall survival, OS)和无进展生存期(progress-free survival, PFS)最差,而使用激素+免疫抑制剂与仅仅接受对症治疗的患者预后类似[19]。
8 irAEs与疗效是否存在关联?
多年来,有很多的研究聚焦irAEs与免疫治疗疗效的关系。主要观点包括[4,20-23]:(1)出现irAEs的患者可能有更好的预后,如NSCLC、肾癌、膀胱癌、恶性黑色素瘤患者等。但也有研究认为两者并无因果关系,还有研究认为发生高级别irAEs的NSCLC患者OS并未延长,因为高级别irAEs危及生命,通常需要停止治疗或抑制全身免疫,这可能抵消了ICIs的作用;(2)不同类型的irAEs预测疗效的价值可能不一样。有研究认为出现白癜风或其他皮肤毒性可能提示预后更好,但也有研究显示皮肤毒性、甲状腺功能异常与OS无关;(3)在治疗早期出现irAEs者的PFS更优;(4)irAEs及其频次仅与客观缓解率(objective response rate, ORR)之间存在关联。有研究发现,irAEs只与ORR有关,与PFS无关。另有研究认为,发生三次或以上irAEs的部分患者的ORR最高;(5)发生多器官irAEs的患者ORR、PFS或OS延长。与发生单器官和未发生irAEs患者相比,发生多器官irAEs患者的PFS和OS显著改善。
笔者认为,这些结论均非最后定论,“irAEs预示疗效更好”的观点尚片面和武断,希望未来有基于大型Ⅲ期试验的前瞻性分析回答这个问题。如果确实是如此,那么试图降低irAEs发病率的试验就必须仔细考虑对毒性和疗效的影响。
9 免疫如何重启?
9.1 人群选择
2018年,有研究发现接受PD-1单抗(±CTLA-4单抗)治疗后的NSCLC未响应患者在irAEs缓解后,继续用药组和停止用药组相比,OS有统计学差异;但早期有治疗响应(部分缓解+完全缓解)的患者在irAEs缓解后两组的PFS、OS结果没有统计学差异;该研究同时指出,在irAEs处理完毕之后,与终止治疗组相比,重启免疫治疗组的OS获益更佳,且部分患者在重启免疫治疗后获得缓解[24]。目前在临床中,患者、家属绝大多数都要求重启,医生也多数主张重启[25]。
9.2 irAEs在重启后可能再现
重启免疫的时间节点是患者irAEs相关体征和症状得到缓解,或在使用≤10 mg/d泼尼松(或等效)时得到控制。据文献报道,因irAEs导致停药后再次使用ICIs,导致28.9%~50%患者再次出现相同或新的irAEs[26-27]。
9.3 重启原则不尽相同
不同器官出现毒性的患者,在irAEs处理完毕后重启ICIs治疗的原则不尽相同。2023版CSCO《ICIs相关的毒性管理指南》在附录部分给出了详细的建议。比如,出现G2以上心脏毒性者,建议永不重启ICIs治疗;但很多G3的皮肤毒性、免疫性肺炎、免疫性肝炎患者,在充分评估后仍可考虑重启。另外,即使同属一个系统的免疫毒性,也应根据不同亚型的AEs遵循不同的重启原则。以免疫相关神经毒性为例,如出现任何级别的格林-巴利综合征或横贯性脊髓炎、G2~4重症肌无力或脑炎,应永久停止ICIs治疗;G1~2周围神经病变者,如症状改善至G1级可再使用ICIs;无菌性脑膜炎者应在G1~2恢复到G0后再使用ICIs。
10 特殊人群接受免疫治疗安全吗?
在真实世界中,特殊人群的相对比例不高,但绝对人数较多。不同的文献对特殊人群的定义并不完全相同。2022、2023年CSCO免疫治疗专家委员会分别发布了《ICIs特殊人群应用专家共识》中、英文版以及CSCO《ICIs相关的毒性管理指南》[28-29],将特殊人群定义为三大类(并存病、伴随用药、特殊临床条件等)十余小类,包括自身免疫性疾病、乙肝或丙肝病毒携带、结核感染、接受造血干细胞或器官移植、妊娠期、主要脏器功能不全或体能状态(performance status, PS)评分≥2、老年、艾滋病毒携带、免疫接种等人群,并分别给出了ICIs安全使用推荐建议。这三部共识或指南,为中国特殊人群接受免疫治疗提供了有效的帮助和指导。
特殊人群通常被排除在临床研究之外,其疗效及安全性数据匮乏,因此需要更多的研究进一步回答。比如有研究[30]认为,在接受ICIs治疗的老年患者队列中,并未观察到≥3级irAEs明显增加;然而,老年患者因毒性而中断治疗的情况更为常见,这表明低级毒性对老年患者的影响更大。为了回答老年尤其是高龄患者接受ICIs治疗的疗效和安全性问题,笔者通过研究发现[31],(1)≥75岁患者的治疗获益低于<75岁患者,且TRAEs发生率更高;如果PD-L1阳性,建议使用ICIs单药;(2)≥80岁患者接受免疫治疗的疗效有限且irAEs发生率高,因此应谨慎使用ICIs;(3)相对于年龄而言,PS评分与免疫治疗疗效更为相关。笔者认为,包括老年患者在内的特殊人群更易出现irAEs,故接受ICIs治疗需要慎重。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:付 烊:文章撰写王俊、章必成:文章审阅及修改 -
表 1 用于治疗irAEs的常见免疫抑制剂和方法
Table 1 Immunosuppressants and methods commonly used for irAEs
Treatment Indications* Mechanism Cautions Non-specific immunosuppressants Glucocorticosteroid All irAEs Broad-spectrum anti-inflammatory and non-specific immunosuppressive effects, including the suppression of cellular and humoral immunity Excludes some endocrine toxicities Mycophenolate Mofetil (MMF) All irAEs, especially steroid-refractory irAEs Inhibition of T and B cell proliferation by depleting guanine nucleotides 500-1000 mg, twice daily Targeting T lymphocytes Immunoglobulin (IVIG) Severe, refractory, or multiple irAEs, including Guillain-Barré syndrome, myasthenia gravis, myositis, encephalitis, demyelinating lesions, bullous rash, SJS/TEN, DRESS, thrombocytopenia, pneumonia Induction of autoreactive T cell inactivation, regulation of cytokine production, downregulation of B cell activation and antibody production, interference with complement activation, inhibition of macrophages and dendritic cells, neutralization of pathogenic autoantibodies through anti-idiotypic antibodies 0.4 g/(kg·d) for 3-5 d, repeatable every 28 d Tacrolimus Hepatotoxicity, hematotoxicity, cardiovascular toxicity Calcineurin inhibitor, suppresses T cell activation 0.1-0.2 mg/(kg·d); requires concentration monitoring Cyclosporine Hepatotoxicity, hematotoxicity, nephrotoxicity Calcineurin inhibitor, inhibits the production of T cell activation factor IL-2 Requires concentration monitoring Anti-thymocyte globulin(ATG) Hepatotoxicity, hematotoxicity, cardiotoxicity Complement-dependent cytotoxicity induces T cell consumption 30 mg/kg, alternate-day dosing, for 6 doses Alemtuzumab Myocarditis Targets CD52 expressed on mature lymphocytes, monocytes, and natural killer cells, leading to severe depletion of these cells Not specified Abatacept Myocarditis Soluble CTLA-4 fusion protein, induces T cell inactivation 500-1000 mg, once a week on the 0, 2nd, and 4th week, then 300 mg, once every 4 weeks Vedolizumab Gastrointestinal toxicity, associated hepatitis Blocks integrin α4β7 expressed on gut epithelial cells, reducing T cell infiltration 300 mg, once a week on the 0, 2nd and 6th week, then once every 8 weeks Natalizumab Encephalitis Blocks integrin α4 expressed on the blood-brain barrier, reducing T cell infiltration Not specified Methotrexate (MTX) Myositis, arthritis Inhibits T cell nucleic acid and protein synthesis Low dose, once every 12 hours, for 3 times; repeat weekly Cyclophosphamide (CTX) Hematotoxicity Inhibits T cell nucleic acid and protein synthesis 0.4 g, once a week; repeat weekly Targeting B lymphocytes and antibodies Rituximab Hematotoxicity (especially thrombocytopenia), neurotoxicity (especially myasthenia gravis, aseptic meningitis, encephalitis), renal vasculitis, bullous dermatitis, hepatotoxicity Targets CD20, induces B cell depletion 375 mg/m2, once a week; repeat weekly Plasmapheresis Severe, refractory, or multiple irAEs, especially 3M syndrome (myasthenia gravis, myositis, myocarditis), Guillain-Barré syndrome, encephalitis, transverse myelitis, cholangitis with autoimmune hepatitis, hematotoxicity Removes pathogenic autoantibodies 3-5 sessions; if used in combination with IVIG, should be done before IVIG Targeting cytokines Infliximab Gastrointestinal toxicity, arthritis, pneumonia, hematotoxicity, nephrotoxicity, myocarditis, ocular toxicity, ototoxicity, bladder toxicity Targets TNF-α 5 mg/kg, once a week on the 1st, 2nd, and 6th week Adalimumab Gastrointestinal toxicity, arthritis Targets TNF-α 40 mg, every other week Etanercept Gastrointestinal toxicity, arthritis Targets TNF-α 25 mg, every three days, with the first dose doubled Tocilizumab Pulmonary toxicity, rheumatism, neurotoxicity, hepatotoxicity, hematotoxicity, cardiovascular toxicity, dermatotoxicity Targets IL-6 8 mg/kg, every 4 weeks Omalizumab Dermatotoxicity Targets IgE According to the instructions Anakinra Targets IL-1 100 mg, once a day Secukinumab Targets IL-17 300 mg, once a week, on the 0, 1st, 2nd, 3th, 4th week, then once every 4 weeks Ustekinumab Targets IL-12/IL-23 260 mg (≤55 kg), 390 mg
(>55-85 kg), 520 mg (≥85 kg)Mepolizumab Targets IL-5 300 mg, once every 4 weeks Targeting signal pathways Tofacitinib Cardiotoxicity Targets JAK-STAT pathway 5 mg, twice a day Sirolimus Eosinophilia Targets mTOR pathway 5 mg, once orally, then 3 mg, once a day, titrated to therapeutic levels Note: *: Indications are not limited to the symptoms listed. 表 2 部分免疫抑制剂潜在不良反应
Table 2 Potential side effects of some immunosuppressants
Target Drug Potential side effects Not recommended (or cautious) use TNF Infliximab Hepatotoxicity, cardiotoxicity, heart failure,
exacerbation of interstitial lung disease,
activation of hepatitis viruses and tuberculosis,
leukopenia, infectionHepatitis, cardiotoxicity, pneumonia TNF Etanercept Inflammatory bowel disease,
exacerbation of interstitial lung diseaseHepatitis, colitis, pneumonia IL-6 Tocilizumab Gastrointestinal perforation,
bone marrow suppressionColitis, hematotoxicity IL-1 Anakinra Leukopenia Hematotoxicity IL-17 Secukinumab Diarrhea Colitis IL-12/IL-23 Ustekinumab Reversible posterior
leukoencephalopathy syndromeNeurotoxicity JAK-STAT Tofacitinib Colitis, bone marrow suppression,
cardiac conduction delay, thrombosisColitis, hematotoxicity, cardiotoxicity mTOR Sirolimus Pneumonia, hyperglycemia Pneumonia, diabetes IVIG Rash, acute kidney injury, thrombosis Nephrotoxicity, etc. ATG Allergic reactions, hepatitis, acute kidney injury,
hematotoxicity (thrombocytopenia, hemolysis)Hepatitis, nephrotoxicity, hematotoxicity -
[1] 中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会免疫检查点抑制剂相关的毒性管理指南[M]. 北京: 人民卫生出版社, 2023. [Guidelines Working Committee of Chinese Society of Clinical Oncology. Guidelines of Chinese Society of Clinical Oncology: management of immune checkpoint inhibitor-related toxicity[M]. Beijing: People’s Medical Publishing House, 2023.] Guidelines Working Committee of Chinese Society of Clinical Oncology. Guidelines of Chinese Society of Clinical Oncology: management of immune checkpoint inhibitor-related toxicity[M]. Beijing: People’s Medical Publishing House, 2023.
[2] Jing Y, Yang J, Johnson DB, et al. Harnessing big data to characterize immune-related adverse events[J]. Nat Rev Clin Oncol, 2022, 19(4): 269-280. doi: 10.1038/s41571-021-00597-8
[3] Fahey CC, Gracie TJ, Johnson DB. Immune checkpoint inhibitors: maximizing benefit whilst minimizing toxicity[J]. Expert Rev Anticancer Ther, 2023, 23(7): 673-683. doi: 10.1080/14737140.2023.2215435
[4] Suijkerbuijk KPM, van Eijs MJM, van Wijk F, et al. Clinical and translational attributes of immune-related adverse events[J]. Nat Cancer, 2024, 5(4): 557-571. doi: 10.1038/s43018-024-00730-3
[5] Tarhini AA, Lee SJ, Hodi FS, et al. Phase Ⅲ study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon Alfa-2b for resected high-risk melanoma: north American intergroup E1609[J]. J Clin Oncol, 2020, 38(6): 567-575. doi: 10.1200/JCO.19.01381
[6] Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline summary[J]. J Oncol Pract, 2018, 14(4): 247-249. doi: 10.1200/JOP.18.00005
[7] Tang SQ, Tang LL, Mao YP, et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients[J]. Cancer Res Treat, 2021, 53(2): 339-354. doi: 10.4143/crt.2020.790
[8] Owen CN, Bai X, Quah T, et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma[J]. Ann Oncol, 2021, 32(7): 917-925. doi: 10.1016/j.annonc.2021.03.204
[9] Johnson DB, Nebhan CA, Moslehi JJ, et al. Immune-checkpoint inhibitors: long-term implications of toxicity[J]. Nat Rev Clin Oncol, 2022, 19(4): 254-267. doi: 10.1038/s41571-022-00600-w
[10] Gougis P, Jochum F, Abbar B, et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade-a worldwide perspective[J]. EClinicalMedicine, 2024, 70: 102536. doi: 10.1016/j.eclinm.2024.102536
[11] Ebinama U, Sheshadri A, Anand K, et al. Pulmonary immune-related adverse events of PD-1 versus PD-L1 checkpoint inhibitors: a retrospective review of pharmacovigilance[J]. J Immunother Precis Oncol, 2023, 6(4): 177-184. doi: 10.36401/JIPO-22-38
[12] Xu Y, Fu Y, Zhu B, et al. Predictive biomarkers of immune checkpoint inhibitors-related toxicities[J]. Front Immunol, 2020, 11: 2023. doi: 10.3389/fimmu.2020.02023
[13] Ponvilawan B, Khan AW, Subramanian J, et al. Non-invasive predictive biomarkers for immune-related adverse events due to immune checkpoint inhibitors[J]. Cancers (Basel), 2024, 16(6): 1225. doi: 10.3390/cancers16061225
[14] Ruf T, Kramer R, Forschner A, et al. Second-line therapies for steroid-refractory immune-related adverse events in patients treated with immune checkpoint inhibitors[J]. Eur J Cancer, 2024, 203: 114028. doi: 10.1016/j.ejca.2024.114028
[15] Esfahani K, Elkrief A, Calabrese C, et al. Moving towards personalized treatments of immune-related adverse events[J]. Nat Rev Clin Oncol, 2020, 17(8): 504-515. doi: 10.1038/s41571-020-0352-8
[16] 中国临床肿瘤学会免疫治疗专家委员会. 免疫检查点抑制剂相关的毒性多学科诊疗协作组建设中国专家共识[J]. 临床肿瘤学杂志, 2022, 27(2): 158-164. [Immunotherapy expert committee of Chinese Society of Clinical Oncology. Chinese consensus on the construction of multidisciplinary team for management of immune checkpoint inhibitor-related toxicity[J]. Lin Chuang Zhong Liu Xue Za Zhi, 2022, 27(2): 158-164.] Immunotherapy expert committee of Chinese Society of Clinical Oncology. Chinese consensus on the construction of multidisciplinary team for management of immune checkpoint inhibitor-related toxicity[J]. Lin Chuang Zhong Liu Xue Za Zhi, 2022, 27(2): 158-164.
[17] Henderson Berg MH, Del Rincón SV, Miller WH. Potential therapies for immune-related adverse events associated with immune checkpoint inhibition: from monoclonal antibodies to kinase inhibition[J]. J Immunother Cancer, 2022, 10(1): e003551. doi: 10.1136/jitc-2021-003551
[18] van Not OJ, Verheijden RJ, van den Eertwegh AJM, et al. Association of Immune-Related Adverse Event Management With Survival in Patients With Advanced Melanoma[J]. JAMA Oncol, 2022, 8(12): 1794-1801. doi: 10.1001/jamaoncol.2022.5041
[19] Cariou PL, Pobel C, Michot JM, et al. Impact of immunosuppressive agents on the management of immune-related adverse events of immune checkpoint blockers[J]. Eur J Cancer, 2024, 204: 114065. doi: 10.1016/j.ejca.2024.114065
[20] Amoroso V, Gallo F, Alberti A, et al. Immune-related adverse events as potential surrogates of immune checkpoint inhibitors' efficacy: a systematic review and meta-analysis of randomized studies[J]. ESMO Open, 2023, 8(2): 100787. doi: 10.1016/j.esmoop.2023.100787
[21] Lin L, Liu Y, Chen C, et al. Association between immune-related adverse events and immunotherapy efficacy in non-small-cell lung cancer: a meta-analysis[J]. Front Pharmacol, 2023, 14: 1190001. doi: 10.3389/fphar.2023.1190001
[22] Hussaini S, Chehade R, Boldt RG, et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors - A systematic review and meta-analysis[J]. Cancer Treat Rev, 2021, 92: 102134. doi: 10.1016/j.ctrv.2020.102134
[23] Socinski MA, Jotte RM, Cappuzzo F, et al. Association of immune-related adverse events with efficacy of atezolizumab in patients with non-small cell lung cancer: pooled analyses of the phase 3 IMpower130, IMpower132, and IMpower150 randomized clinical trials[J]. JAMA Oncol, 2023, 9(4): 527-535. doi: 10.1001/jamaoncol.2022.7711
[24] Santini FC, Rizvi H, Plodkowski AJ, et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC[J]. Cancer Immunol Res, 2018, 6(9): 1093-1099. doi: 10.1158/2326-6066.CIR-17-0755
[25] Lin G, Wang Z, Chu Q, et al. Rechallenge of immune checkpoint inhibitors in advanced non-small cell lung cancer[J]. Thorac Cancer, 2024, 15(5): 419-426. doi: 10.1111/1759-7714.15209
[26] Albandar HJ, Fuqua J, Albandar JM, et al. Immune-related adverse events (irAE) in cancer immune checkpoint inhibitors (ICI) and survival outcomes correlation: to rechallenge or not?[J] Cancers (Basel), 2021, 13(5): 989.
[27] Allouchery M, Lombard T, Martin M, et al. Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade ≥2 immune-related adverse events in patients with cancer[J]. J Immunother Cancer, 2020, 8(2): e001622. doi: 10.1136/jitc-2020-001622
[28] 中国临床肿瘤学会免疫治疗专家委员会. 免疫检查点抑制剂特殊人群应用专家共识[J]. 临床肿瘤学杂志, 2022, 27(5): 442-454. [Immunotherapy Expert Committee of Chinese Society of Clinical Oncology. Expert consensus on the application of immune checkpoint inhibitors in special papulations[J]. Lin chuang Zhong Liu Xue Za Zhi, 2022, 27(5): 442-454.] Immunotherapy Expert Committee of Chinese Society of Clinical Oncology. Expert consensus on the application of immune checkpoint inhibitors in special papulations[J]. Lin chuang Zhong Liu Xue Za Zhi, 2022, 27(5): 442-454.
[29] Wang J, Zhang B, Peng L, et al. Chinese expert consensus recommendations for the administration of immune checkpoint inhibitors to special cancer patient populations[J]. Ther Adv Med Oncol, 2023, 15: 17588359231187205.
[30] 尹佳鑫, 宋羽霄, 章必成. 老年晚期非小细胞肺癌免疫治疗策略[J]. 医药导报, 2024, 43(3): 352-359. [Yin JX, Song YX, Zhang BC. Immunotherapy strategy for advanced non-small cell lung cancer in the elderly[J]. Yi Yao Dao Bao, 2024, 43(3): 352-359.] Yin JX, Song YX, Zhang BC. Immunotherapy strategy for advanced non-small cell lung cancer in the elderly[J]. Yi Yao Dao Bao, 2024, 43(3): 352-359.
[31] Yin J, Song Y, Fu Y, et al. The efficacy of immune checkpoint inhibitors is limited in elderly NSCLC: a retrospective efficacy study and meta-analysis[J]. Aging (Albany NY), 2023, 15(24): 15025-15049.
计量
- 文章访问数: 1590
- HTML全文浏览量: 4255
- PDF下载量: 1602