Research Progress on Molecular Diagnosis and Individualized Treatment for Malignant Lymphoma
-
摘要:
淋巴瘤是起源于人体淋巴造血系统的一组异质性恶性肿瘤,不同类型淋巴瘤在临床表现、治疗策略和疾病转归方面存在较大差异。近年来,高通量测序等新技术的快速发展大大推动了淋巴瘤的分子诊断和发病机制等方面的研究进展。在新药时代,通过精准分层有的放矢地选择靶向药物,不但能够改善淋巴瘤患者的预后,而且可以减少传统化疗的不良反应,并最终实现肿瘤的个体化精准治疗,从而使更多患者受益。本文就近期不同淋巴瘤亚型的分子诊断及个体化治疗的研究进展以及2023年ASCO、EHA、ICML等重要会议中淋巴瘤相关的研究作一综述。
Abstract:Lymphoma refers to a group of heterogeneous malignancies originating from the reticuloendothelial and lymphatic systems. The clinical manifestations, treatment strategies, and disease outcomes of different types of lymphoma considerably vary. Recent developments in high-throughput sequencing technologies have enhanced understanding of the pathogenesis and molecular stratification of lymphoma. In the era of new drugs, precise stratification and targeted drug selection can not only improve the prognosis of patients with lymphoma but also reduce the toxic side effects of traditional chemotherapy, ultimately achieving the accurate diagnosis and individualized treatment of tumors. This article reviews the research progress of molecular diagnosis and individualized treatment of different lymphoma subtypes and lymphoma-related research in important meetings such as ASCO, EHA, and ICML in 2023.
-
Key words:
- Malignant lymphoma /
- Molecular diagnosis /
- Personalized medicine /
- Research progress
-
0 引言
食管癌是常见的消化道疾病,为世界八大恶性肿瘤之一[1]。2012年间全世界范围内就有45.58万新增食管癌病例,死亡数40万人,东亚、非洲东部和南部是食管癌最严重地区[2]。目前食管癌治疗的主要方法仍然为外科手术[3]。高复发率仍然是一个亟待解决的问题。为此,越来越多的人趋向于多种疗法结合的策略,可将外科手术与化学疗法、放射疗法及放化疗法进行结合。在日本,用顺铂(CDDP)和5-氟尿嘧啶(5-Fu)进行化疗后再实施外科手术已经成为可切除食管癌的一种标准疗法[4]。对于不可切除的食管癌,化学疗法和放化疗法则成为标准治疗方案,目前被广泛认可的食管癌化学治疗药物仅有多烯紫杉醇(TxT)、CDDP和5-Fu[5]。因此,不论是可切除还是不可切除的食管癌,化学治疗药物都有着不可替代的作用,寻找更多的有效化学治疗药物对食管癌的治疗具有重要意义。芦荟是常见的多年生草本植物,易于种植。其用途十分广泛,在急性创伤、炎症反应、糖尿病、溃疡以及免疫调节等方面都发挥着积极作用[6]。本文就芦荟苷对食管鳞状细胞癌增殖、凋亡和侵袭进行了体外探讨,为发掘新的食管癌化疗药物提供理论参考。
1 材料与方法
1.1 细胞株和主要试剂
食管癌细胞系KESY70购自美国典型培养物保藏中心(American Type Culture Collection, ATCC)。RPMI 1640培养液和胎牛血清购自美国赛默飞世尔科技公司。芦荟苷购自美国Sigma公司,用DMSO进行溶解制成母液。Cell Counting Kit-8(CCK-8)购自日本同仁化学公司,细胞凋亡检测试剂盒Annexin V Apoptosis Detection Kit和Transwell小室及人工基底膜均购自美国BD公司。
1.2 细胞培养及药物处理
食管癌KESY70细胞培养于含10%胎牛血清和100 u/ml青-链霉素的RPMI 1640培养液中,并置于37℃、5%CO2的恒温培养箱中。食管癌KESY70细胞随机分为5组:未处理对照组(KESY70)、对照组(DMSO)和芦荟苷(10、40、80 μmol/L)组。
1.3 CCK-8检测细胞存活和增殖能力
食管癌细胞KESY70加入10、20、40、80和120 μmol/L的芦荟苷,添加DMSO为对照组。孵育24 h后,CCK-8法检测不同浓度下食管癌KESY70细胞的存活率。用10、40和80 μmol/L的芦荟苷处理食管癌KESY70细胞,分别于0、24、48、72和96 h检测细胞增殖倍数。
1.4 流式细胞术分析细胞凋亡
分别收集不同浓度(终浓度为:10、40和80 μmol/L)芦荟苷处理的细胞,制成1×106个每毫升的细胞悬液。FITC/PI染色15 min,利用流式细胞仪对染色的细胞进行检测,统计细胞凋亡率。
1.5 Transwell检测细胞侵袭能力
细胞悬浮于含1%胎牛血清的RPMI 1640培养液中并添加芦荟苷至终浓度为10、40和80 μmol/L,制成细胞密度为1×106个每毫升的细胞悬液。将细胞悬液加入到铺有人工基底膜的Transwell小室的上室中,下室加入含20%胎牛血清的RPMI 1640培养液。37℃、5%CO2的恒温培养箱中培养24 h后,0.5%的结晶紫染色后显微镜下观察细胞形态并随机选取5个视野统计细胞数量。
1.6 蛋白印迹法分析细胞增殖、凋亡和侵袭标记蛋白的表达
收集经芦荟苷处理的细胞,PBS洗3次后加入含蛋白酶抑制剂的细胞裂解液进行总蛋白的提取。然后进行SDS-PAGE凝胶电泳分离,再将蛋白转至PVDF膜。经5%的BSA封闭后,依次孵育相应的一抗和二抗,最后进行显色。统计灰度值计算相对表达量。
1.7 统计学方法
实验数据的统计学分析用SPSS16.0软件进行。两两比较用独立的t检验。P < 0.05为差异有统计学意义。
2 结果
2.1 芦荟苷对食管癌KESY70细胞活力的影响
加入10和20 μmol/L芦荟苷的食管癌细胞KESY70的存活率与DMSO组差异无统计学意义(P=0.623);当芦荟苷浓度达到40 μmol/L时,食管癌细胞KESY70的存活率降低更明显(P=0.036);芦荟苷浓度再增加至80和120 μmol/L时,食管癌细胞KESY70的存活率明显的降低(P=0.008),见图 1。可见,较低浓度的芦荟苷对食管癌KESY70细胞活力并无影响,但随着芦荟苷浓度的升高,食管癌细胞KESY70的活力也随之降低。
2.2 CCK-8法分析KESY70细胞增殖
低浓度(10 μmol/L)的芦荟苷不会影响KESY70的增殖能力;中浓度(40 μmol/L)的芦荟苷添加3 d后,KESY70细胞的增殖受到了明显抑制(P < 0.05);更高浓度(80 μmol/L)的芦荟苷作用3 d后,KESY70细胞增殖倍数显著低于DMSO组(P < 0.05),见图 2。表明当芦荟苷达到一定浓度时,食管癌细胞系KESY70的增殖能力会明显减弱,呈时间-剂量依赖性。
2.3 流式细胞术检测KESY70细胞凋亡
向食管癌细胞KESY70添加芦荟苷至终浓度为10、40和80 μmol/L,运用流式细胞术检测芦荟苷对KESY70细胞凋亡的影响。10 μmol/L的芦荟苷明显地增加KESY70细胞凋亡率(P < 0.05);40和80 μmol/L的芦荟苷十分显著地增加细胞凋亡率(P < 0.01),见图 3。由此可见,一定浓度的芦荟苷具有促进KESY70细胞凋亡的功能。
2.4 Transwell分析食管癌细胞KESY70侵袭能力
结晶紫染色后,通过显微镜下计数分析发现,10 μmol/L的芦荟苷明显地降低了KESY70细胞的侵袭能力(P < 0.05);40和80 μmol/L的芦荟苷则十分显著地降低了KESY70细胞的侵袭能力(P < 0.01),表明添加芦荟苷可以抑制食管癌细胞KESY70的侵袭能力,见图 4。
2.5 蛋白印迹法检测细胞增殖、凋亡和侵袭标记蛋白的表达
从蛋白印迹的结果图可以看出,芦荟苷可以抑制细胞增殖标记蛋白PCNA和侵袭标记蛋白MMP-9的表达;促进细胞凋亡标记蛋白Cleaved caspase-3的表达,见图 5A。与DMSO组相比,10和40 μmol/L加药组的细胞增殖标记蛋白PCNA的表达明显减弱(P < 0.05);80 μmol/L的表达显著降低(P < 0.01),见图 5B。10 μmol/L加药组细胞凋亡标记蛋白Cleaved caspase-3的表达明显高于DMSO组(P < 0.05);40和80 μmol/L的蛋白表达量明显升高(P < 0.01),见图 5C。加药组10、40和80 μmol/L的侵袭标记蛋白MMP-9的表达均降低,与DMSO组存在显著差异(P < 0.01),见图 5D。证明芦荟苷具有抑制食管癌细胞KESY70增殖和侵袭、促进细胞凋亡的作用。
3 讨论
细胞增殖的不受控是各类癌症的主要特征[7]。芦荟苷作为芦荟的有效药用成分之一,对多种癌症细胞的增殖具有一定的影响。有研究报道, > 140 μmol/L的芦荟苷还可以明显降低宫颈癌细胞HeLaS3的存活能力[8]。Ming-Chin等发现用150和200 μmol/L的芦荟苷处理肺癌细胞72 h后,细胞存活能力降低了50% [9]。本研究结果显示, > 40 μmol/L的芦荟苷处理食管癌细胞KYSE70会导致食管癌KYSE70细胞活力和增殖能力降低。
许多疾病中都会出现细胞凋亡的异常[10]。据报道芦荟苷在调节各类疾病的细胞凋亡方面发挥着积极作用。有数据显示芦荟苷可以促进结直肠癌细胞凋亡[11],还可诱导非小细胞肺癌A549细胞凋亡[12]。Wang等发现高分子纳米粒装载的芦荟苷可增强胃癌细胞凋亡[13]。本文结果显示, > 10 μmol/L的芦荟苷可有效促进食管癌细胞KYSE70的凋亡。
癌细胞的侵袭能力在癌症的发生发展进程中至关重要,越来越多的研究表明芦荟苷具有抑制癌细胞侵袭的功效。Pan等发现芦荟苷可减弱结直肠癌细胞的侵袭能力[11]。有数据显示,500 μmol/L的芦荟苷可以有效降低黑色素瘤细胞B16-F10的侵袭能力[14]。另外,芦荟苷处理还可减弱非小细胞肺癌细胞侵袭[15]。本研究检测了10、40和80 μmol/L芦荟苷对食管癌细胞KYSE70侵袭能力的影响,发现食管癌细胞KYSE70侵袭能力会随着芦荟苷浓度的升高而降低。
许多蛋白质在细胞增殖,凋亡及侵袭中起着重要的调控作用。如Ki67、PCNA、Caspase及MMPs等[16-18]。大量数据表明芦荟苷具有调控细胞增殖、凋亡及侵袭相关蛋白表达的功能。据报道芦荟苷可降低结肠癌中增殖相关蛋白PCNA的表达[19]。另外,芦荟苷处理非小细胞肺癌细胞后,凋亡相关蛋白Caspase-3、Caspase-8和Caspase-9表达上升,侵袭相关蛋白VEGF、MMP-9和MMP-14表达下降[15]。本研究结果显示,芦荟苷可减弱食管癌KYSE70细胞增殖相关蛋白PCNA和侵袭相关蛋白MMP-9表达,增强凋亡相关蛋白caspase-3的表达。
本研究中,低浓度(10和20 μmol/L)的芦荟苷对食管癌KYSE70细胞的生存活力无影响,中高浓度(40、80和120 μmol/L)的芦荟苷则可以抑制食管癌KYSE70细胞活力。40和80 μmol/L的芦荟苷作用于食管癌KYSE70细胞72 h后,细胞增殖能力明显减弱。10、40和80 μmol/L的芦荟苷还可以促进食管癌KYSE70细胞凋亡,抑制细胞侵袭。
综上所述,体外研究表明芦荟苷可以抑制食管癌KYSE70细胞的增殖和侵袭,促进细胞凋亡。本研究仅在细胞层面进行了探索,为了更加深入研究芦荟苷在食管癌治疗中的作用,下一步,我们计划建立KYSE70荷瘤小鼠模型,探索芦荟苷在体内对食管癌细胞增殖和迁移的影响及相应的信号通路,为新一代的食管癌抗癌药物的开发提供理论依据。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:王刚刚:文献收集及论文构思,撰写与修改王先火:论文修改张会来:论文撰写指导及审阅 -
[1] Wang HW, Balakrishna JP, Pittaluga S, et al. Diagnosis of Hodgkin lymphoma in the modern era[J]. Br J Haematol, 2019, 184(1): 45-59. doi: 10.1111/bjh.15614
[2] Connors JM, Cozen W, Steidl C, et al. Hodgkin lymphoma[J]. Nat Rev Dis Primers, 2020, 6(1): 61. doi: 10.1038/s41572-020-0189-6
[3] Meyer RM, Gospodarowicz MK, Connors JM, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin's lymphoma[J]. N Engl J Med, 2012, 366(5): 399-408. doi: 10.1056/NEJMoa1111961
[4] Abramson JS, Arnason JE, LaCasce AS, et al. Brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine for nonbulky limited-stage classical Hodgkin lymphoma[J]. Blood, 2019, 134(7): 606-613. doi: 10.1182/blood.2019001272
[5] Bröckelmann PJ, Goergen H, Keller U, et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial[J]. JAMA Oncol, 2020, 6(6): 872-880. doi: 10.1001/jamaoncol.2020.0750
[6] Allen PB, Savas H, Evens AM, et al. Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma[J]. Blood, 2021, 137(10): 1318-1326. doi: 10.1182/blood.2020007400
[7] Park SI, Shea TC, Olajide O, et al. ABVD followed by BV consolidation in risk-stratified patients with limited-stage Hodgkin lymphoma[J]. Blood Adv, 2020, 4(11): 2548-2555. doi: 10.1182/bloodadvances.2020001871
[8] Straus D, Radford J, Connors J, et al. HL-507 First-Line Brentuximab Vedotin Plus Chemotherapy Improves Overall Survival in Patients With Stage Ⅲ/Ⅳ Classical Hodgkin Lymphoma: An Updated Analysis of ECHELON-1[J]. Clin Lymphoma Myeloma Leuk, 2022, 22(suppl 2): S350.
[9] Herrera AF, LeBlanc ML, Castellino SM, et al. SWOG S1826, a randomized study of nivolumab(N)-AVD versus brentuximab vedotin(BV)-AVD in advanced stage(AS) classic Hodgkin lymphoma(HL)[J]. J Clin Oncol, 2023, 41(suppl 17): LBA4.
[10] Ramchandren R, Domingo-Domènech E, Rueda A, et al. Nivolumab for Newly Diagnosed Advanced-Stage Classic Hodgkin Lymphoma: Safety and Efficacy in the Phase Ⅱ CheckMate 205 Study[J]. J Clin Oncol, 2019, 37(23): 1997-2007. doi: 10.1200/JCO.19.00315
[11] Yang Y, Yang H, Sun P, et al. Smart Start with Tislelizumab as the Front-line Treatment in Patients with High-risk Stage IIB and Advanced-stage Classical Hodgkin Lymphoma [J]. Hematol Oncol, 2023, 41(suppl 2): 114-115.
[12] Evens AM, Advani RH, Helenowski IB, et al. Multicenter Phase Ⅱ Study of Sequential Brentuximab Vedotin and Doxorubicin, Vinblastine, and Dacarbazine Chemotherapy for Older Patients With Untreated Classical Hodgkin Lymphoma[J]. J Clin Oncol, 2018, 36(30): 3015-3022. doi: 10.1200/JCO.2018.79.0139
[13] Cheson BD, Bartlett NL, Laplant B, et al. Brentuximab vedotin plus nivolumab as first-line therapy in older or chemotherapy-ineligible patients with Hodgkin lymphoma (ACCRU): a multicentre, single-arm, phase 2 trial[J]. Lancet Haematol, 2020, 7(11): e808-e815. doi: 10.1016/S2352-3026(20)30275-1
[14] Ansell SM. Hodgkin lymphoma: 2018 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2018, 93(5): 704-715. doi: 10.1002/ajh.25071
[15] Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial [J]. Lancet, 2015, 385(9980): 1853-1862. doi: 10.1016/S0140-6736(15)60165-9
[16] Armand P, Chen YB, Redd RA, et al. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation [J]. Blood, 2019, 134(1): 22-29. doi: 10.1182/blood.2019000215
[17] Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase Ⅱ study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma[J]. J Clin Oncol, 2012, 30(18): 2183-2189. doi: 10.1200/JCO.2011.38.0410
[18] Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase Ⅱ CheckMate 205 Trial [J]. J Clin Oncol, 2018, 36(14): 1428-1439. doi: 10.1200/JCO.2017.76.0793
[19] Kuruvilla J, Ramchandren R, Santoro A, et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study[J]. Lancet Oncol, 2021, 22(4): 512-524. doi: 10.1016/S1470-2045(21)00005-X
[20] Zhang HL, Yu JW, Li H. S216: CD47/PD-L1 bispecific antibody (IBI322) in anti-PD-1 or PD-L1 treatment-resistant classical Hodgkin lymphoma: A phase Ⅰ study[J]. Hemasphere, 2023, 7(suppl 3): e8102841.
[21] Zhang L, Li C, Marhaba A, et al. ITF2357 induces cell cycle arrest and apoptosis of meningioma cells via the PI3K-Akt pathway[J]. Med Oncol, 2022, 40(1): 21. doi: 10.1007/s12032-022-01883-w
[22] Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma[J]. Ther Adv Hematol, 2023, 14: 20406207221149245.
[23] Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma[J]. Blood, 2018, 131(21): 2307-2319. doi: 10.1182/blood-2017-11-764332
[24] Perry AM, Diebold J, Nathwani BN, et al. Non-Hodgkin lymphoma in the Far East: review of 730 cases from the international non-Hodgkin lymphoma classification project[J]. Ann Hematol, 2016, 95(2): 245-251. doi: 10.1007/s00277-015-2543-4
[25] Wright GW, Huang DW, Phelan JD, et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications[J]. Cancer Cell, 2020, 37(4): 551-568. e14. doi: 10.1016/j.ccell.2020.03.015
[26] Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma[J]. N Engl J Med, 2018, 378(15): 1396-1407. doi: 10.1056/NEJMoa1801445
[27] Zhang H, Lu Y, Zhang T, et al. PIM1 genetic alterations associated with distinct molecular profiles, phenotypes and drug responses in diffuse large B-cell lymphoma[J]. Clin Transl Med, 2022, 12(4): e808. doi: 10.1002/ctm2.808
[28] Zhang T, Lu Y, Liu X, et al. Comprehensive analysis of TP53 mutation characteristics and identification of patients with inferior prognosis and enhanced immune escape in diffuse large B-cell lymphoma[J]. Am J Hematol, 2022, 97(1): E14-E17.
[29] Poeschel V, Held G, Ziepert M, et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): a randomised, phase 3, non-inferiority trial[J]. Lancet, 2019, 394(10216): 2271-2281. doi: 10.1016/S0140-6736(19)33008-9
[30] Lenz G, Tilly H, Ziepert M, et al. Pola-R-CHP versus R-CHOEP in young patients with high-risk diffuse large B-cell lymphoma[J]. Hematol Oncol, 2023, 41(suppl 2): 420-421.
[31] Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma[J]. N Engl J Med, 2022, 386(4): 351-363. doi: 10.1056/NEJMoa2115304
[32] Dunleavy K, Fanale MA, Abramson JS, et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: a prospective, multicentre, single-arm phase 2 study[J]. Lancet Haematol, 2018, 5(12): e609-e617. doi: 10.1016/S2352-3026(18)30177-7
[33] Howlett C, Snedecor SJ, Landsburg DJ, et al. Front-line, dose-escalated immunochemotherapy is associated with a significant progression-free survival advantage in patients with double-hit lymphomas: a systematic review and meta-analysis[J]. Br J Haematol, 2015, 170(4): 504-514. doi: 10.1111/bjh.13463
[34] Minson A, Verner E, Giri P, et al. Glofitamab plus R-CHOP or polatuzumab vedotin-R-CHP is deliverable with high overall response in patients ≤65 years of age with high-risk DLBCL: Interim analysis of COALITION[J]. Hematol Oncol, 2023, 41(suppl 2): 421-422.
[35] Rutherford SC, Abramson JS, Bartlett NL, et al. Venetoclax with dose-adjusted EPOCH-R as initial therapy for patients with aggressive B-cell lymphoma: a single-arm, multicentre, phase 1 study[J]. Lancet Haematol, 2021, 8(11): e818-e827. doi: 10.1016/S2352-3026(21)00273-8
[36] Neelapu SS, Dickinson M, Munoz J, et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial [J]. Nat Med, 2022, 28(4): 735-742. doi: 10.1038/s41591-022-01731-4
[37] Peyrade F, Jardin F, Thieblemont C, et al. Attenuated immunochemotherapy regimen (R-miniCHOP) in elderly patients older than 80 years with diffuse large B-cell lymphoma: a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2011, 12(5): 460-468. doi: 10.1016/S1470-2045(11)70069-9
[38] Oberic L, Peyrade F, Puyade M, et al. Subcutaneous Rituximab-MiniCHOP Compared With Subcutaneous Rituximab-MiniCHOP Plus Lenalidomide in Diffuse Large B-Cell Lymphoma for Patients Age 80 Years or Older[J]. J Clin Oncol, 2021, 39(11): 1203-1213. doi: 10.1200/JCO.20.02666
[39] Fields PA, Townsend W, Webb A, et al. De novo treatment of diffuse large B-cell lymphoma with rituximab, cyclophosphamide, vincristine, gemcitabine, and prednisolone in patients with cardiac comorbidity: a United Kingdom National Cancer Research Institute trial[J]. J Clin Oncol, 2014, 32(4): 282-287. doi: 10.1200/JCO.2013.49.7586
[40] Moccia AA, Schaff K, Freeman C, et al. Long-term outcomes of R-CEOP show curative potential in patients with DLBCL and a contraindication to anthracyclines[J]. Blood Adv, 2021, 5(5): 1483-1489. doi: 10.1182/bloodadvances.2020002982
[41] Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma [J]. N Engl J Med, 1995, 333(23): 1540-1545. doi: 10.1056/NEJM199512073332305
[42] Kamdar M, Solomon SR, Arnason J, et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial[J]. Lancet, 2022, 399(10343): 2294-2308. doi: 10.1016/S0140-6736(22)00662-6
[43] Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma [J]. N Engl J Med, 2022, 386(7): 640-654. doi: 10.1056/NEJMoa2116133
[44] Zhang HL, Cheng Y, Yang HY, et al. First interim analysis of a phase 1 study of zanubrutinib (zanu) plus lenalidomide (len) in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL)[J]. J Clin Oncol, 2023, 41(suppl 16): 7557.
[45] Kalakonda N, Maerevoet M, Cavallo F, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial[J]. Lancet Haematol, 2020, 7(7): e511-e522. doi: 10.1016/S2352-3026(20)30120-4
[46] Salles G, Duell J, González Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study[J]. Lancet Oncol, 2020, 21(7): 978-988. doi: 10.1016/S1470-2045(20)30225-4
[47] Duell J, Maddocks KJ, González-Barca E, et al. Long-term outcomes from the Phase Ⅱ L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma[J]. Haematologica, 2021, 106(9): 2417-2426. doi: 10.3324/haematol.2020.275958
[48] Tan D, Horning SJ, Hoppe RT, et al. Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience[J]. Blood, 2013, 122(6): 981-987. doi: 10.1182/blood-2013-03-491514
[49] Rimsza LM, Li H, Braziel RM, et al. Impact of histological grading on survival in the SWOG S0016 follicular lymphoma cohort [J]. Haematologica, 2018, 103(4): e151-e153. doi: 10.3324/haematol.2017.175059
[50] Koch K, Hoster E, Ziepert M, et al. Clinical, pathological and genetic features of follicular lymphoma grade 3A: a joint analysis of the German low-grade and high-grade lymphoma study groups GLSG and DSHNHL[J]. Ann Oncol, 2016, 27(7): 1323-1329. doi: 10.1093/annonc/mdw185
[51] Horn H, Kohler C, Witzig R, et al. Gene expression profiling reveals a close relationship between follicular lymphoma grade 3A and 3B, but distinct profiles of follicular lymphoma grade 1 and 2[J]. Haematologica, 2018, 103(7): 1182-1190. doi: 10.3324/haematol.2017.181024
[52] Barraclough A, England JT, Villa D, et al. Outcomes in grade 3B follicular lymphoma: an international study led by the Australasian Lymphoma Alliance[J]. Haematologica, 2023, 108(9): 2444-2453.
[53] Gao F, Zhang T, Liu H, et al. Risk factors for POD24 in patients with previously untreated follicular lymphoma: a systematic review and meta-analysis[J]. Ann Hematol, 2022, 101(11): 2383-2392. doi: 10.1007/s00277-022-04914-8
[54] Gao F, Zhang T, Liu X, et al. Clinical features and outcomes of patients with follicular lymphoma: A real-world study of 926 patients in China[J]. Front Oncol, 2022, 12: 863021. doi: 10.3389/fonc.2022.863021
[55] Lu Y, Yu J, Gong W, et al. An Immune-Clinical Prognostic Index (ICPI) for Patients With De Novo Follicular Lymphoma Treated With R-CHOP/CHOP Chemotherapy[J]. Front Oncol, 2021, 11: 708784. doi: 10.3389/fonc.2021.708784
[56] Lowry L, Smith P, Qian W, et al. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised phase Ⅲ trial[J]. Radiother Oncol, 2011, 100(1): 86-92. doi: 10.1016/j.radonc.2011.05.013
[57] Macmanus M, Fisher R, Roos D, et al. Randomized Trial of Systemic Therapy After Involved-Field Radiotherapy in Patients With Early-Stage Follicular Lymphoma: TROG 99.03[J]. J Clin Oncol, 2018, 36(29): 2918-2925.
[58] Marcus R, Davies A, Ando K, et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma[J]. N Engl J Med, 2017, 377(14): 1331-1344. doi: 10.1056/NEJMoa1614598
[59] Hong X, Song Y, Shi Y, et al. Efficacy and safety of obinutuzumab for the first-line treatment of follicular lymphoma: a subgroup analysis of Chinese patients enrolled in the phase Ⅲ GALLIUM study[J]. Chin Med J (Engl), 2021, 135(4): 433-440.
[60] Hiddemann W, Barbui AM, Canales MA, et al. Immunochemotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety[J]. J Clin Oncol, 2018, 36(23): 2395-2404. doi: 10.1200/JCO.2017.76.8960
[61] Jacobsen E. Follicular lymphoma: 2023 update on diagnosis and management[J]. Am J Hematol, 2022, 97(12): 1638-1651. doi: 10.1002/ajh.26737
[62] Zucca E, Rondeau S, Vanazzi A, et al. Short regimen of rituximab plus lenalidomide in follicular lymphoma patients in need of first-line therapy [J]. Blood, 2019, 134(4): 353-362. doi: 10.1182/blood-2018-10-879643
[63] Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma[J]. N Engl J Med, 2018, 379(10): 934-947. doi: 10.1056/NEJMoa1805104
[64] Martin P, Jung SH, Pitcher B, et al. A phase Ⅱ trial of lenalidomide plus rituximab in previously untreated follicular non-Hodgkin's lymphoma (NHL): CALGB 50803 (Alliance)[J]. Ann Oncol, 2017, 28(11): 2806-2812. doi: 10.1093/annonc/mdx496
[65] Sehn LH, Bartlett NL, Matasar M, et al. Mosunetuzumab demonstrates durable responses in patients with relapsed and/or refractory follicular lymphoma who have received ≥2 prior therapies: updated analysis of a pivotal phase Ⅱ study[J]. Hematol Oncol, 2023, 41(suppl 2): 122-125.
[66] Merryman RW, Belada D, Sureda A, et al. Epcoritamab + R2 regimen and responses in patients with high-risk follicular lymphoma, regardless of POD24 status[J]. Clin Lymphoma Myeloma Leuk, 2023, 23(Suppl 1): S210.
[67] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. doi: 10.3322/caac.21338
[68] Ferrero S, Rossi D, Rinaldi A, et al. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study[J]. Haematologica, 2020, 105(6): 1604-1612. doi: 10.3324/haematol.2018.214056
[69] Lv H, Fei Y, Li W, et al. A novel clinical immune-related prognostic model predicts the overall survival of mantle cell lymphoma[J]. Hematol Oncol, 2022, 40(3): 343-355. doi: 10.1002/hon.2994
[70] Wu X, Lu H, Pang T, et al. Association of minimal residual disease levels with clinical outcomes in patients with mantle cell lymphoma: A meta-analysis[J]. Leuk Res, 2021, 108: 106605. doi: 10.1016/j.leukres.2021.106605
[71] Mckay P, Leach M, Jackson B, et al. Guideline for the management of mantle cell lymphoma[J]. Br J Haematol, 2018, 182(1): 46-62. doi: 10.1111/bjh.15283
[72] Sarkozy C, Thieblemont C, Oberic L, et al. Very long-term follow-up of rituximab maintenance in young patients with mantle cell lymphoma included in the lyma trial, a lysa study[J]. Hematol Oncol, 2023, 41(suppl 2): 151-152.
[73] Wang ML, Jain P, Zhao S, et al. Ibrutinib-rituximab followed by R-HCVAD as frontline treatment for young patients (≤65 years) with mantle cell lymphoma (WINDOW-1): a single-arm, phase 2 trial[J]. Lancet Oncol, 2022, 23(3): 406-415. doi: 10.1016/S1470-2045(21)00638-0
[74] Wang M, Jain P, Lee HJ, et al. Ibrutinib Plus Rituximab and Venetoclax (IRV) Followed By Risk-Stratified Observation or Short Course R-Hypercvad/MTX in Young Patients with Previously Untreated Mantle Cell Lymphoma- Phase-Ⅱ Window-2 Clinical Trial[J]. Blood, 2021, 138(suppl 1): 3525.
[75] Wang ML, Lee HJ, Fetooh A, et al. Ibrutinib-rituximab and venetoclax (IRV) followed by risk-stratified R-HyperCVAD/MTX in young patients with untreated mantle cell lymphoma-phase-Ⅱ WINDOW-2 trial[J]. Hematol Oncol, 2023, 41(suppl 2): 152-153.
[76] Dreyling M, Doorduijn JK, Gine E, et al. Efficacy and Safety of Ibrutinib Combined with Standard First-Line Treatment or As Substitute for Autologous Stem Cell Transplantation in Younger Patients with Mantle Cell Lymphoma: Results from the Randomized Triangle Trial By the European MCL Network[J]. Blood, 2022, 140(suppl 1): 1-3.
[77] Jain P, Zhao S, Lee HJ, et al. Ibrutinib With Rituximab in First-Line Treatment of Older Patients With Mantle Cell Lymphoma[J]. J Clin Oncol, 2022, 40(2): 202-212. doi: 10.1200/JCO.21.01797
[78] Wang M, Jurczak W, Jerkeman M, et al. Primary results from the double-blind, placebo-controlled, phase Ⅲ SHINE study of ibrutinib in combination with bendamustine-rituximab (BR) and R maintenance as a first-line treatment for older patients with mantle cell lymphoma (MCL)[J]. J Clin Oncol, 2022, 40(suppl 17): LBA7502.
[79] Cohen JB, Shah NN, Alencar AJ, et al. MCL-133 Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Previously Treated Mantle Cell Lymphoma: Updated Results From the Phase 1/2 BRUIN Study[J]. Clin Lymphoma Myeloma Leuk, 2022, 22 Suppl 2: S394-S395.
[80] Wang M, Munoz J, Goy A, et al. Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study[J]. J Clin Oncol, 2023, 41(3): 555-567. doi: 10.1200/JCO.21.02370
[81] Toby A, Eyre CY, Wang ML. Therapeutic options for relapsed/refractory mantle cell lymphoma[J]. Blood, 2022, 139(5): 666-667. doi: 10.1182/blood.2021013326
[82] Wilson MR, Barrett A, Cheah CY, et al. How I manage mantle cell lymphoma: indolent versus aggressive disease[J]. Br J Haematol, 2023, 201(2): 185-198. doi: 10.1111/bjh.18697
[83] Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes[J]. J Clin Oncol, 2008, 26(25): 4124-4130. doi: 10.1200/JCO.2008.16.4558
[84] Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma[J]. Blood, 2014, 123(19): 2915-2923. doi: 10.1182/blood-2013-11-536359
[85] Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms[J]. Leukemia, 2022, 36(7): 1720-1748. doi: 10.1038/s41375-022-01620-2
[86] Marchi E, O'Connor OA. The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management[J]. CA Cancer J Clin, 2020, 70(1): 47-70. doi: 10.3322/caac.21589
[87] Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms[J]. Blood, 2016, 127(20): 2375-2390. doi: 10.1182/blood-2016-01-643569
[88] Cai QQ, Zhu J, Song Y, et al. Golidocitinib in treating refractory or relapsed peripheral T-cell lymphoma: Primary analysis of the multinational pivotal study results (JACKPOT8)[J]. J Clin Oncol, 2023, 41(suppl 16): 7503.
[89] Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-δ, γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma[J]. Blood, 2018, 131(8): 888-898. doi: 10.1182/blood-2017-08-802470
[90] Zaja F, Tabanelli V, Agostinelli C, et al. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? [J]. Am J Hematol, 2017, 92(1): E1-E2. doi: 10.1002/ajh.24502
[91] Rassidakis GZ, Jones D, Lai R, et al. BCL-2 family proteins in peripheral T-cell lymphomas: correlation with tumour apoptosis and proliferation[J]. J Pathol, 2003, 200(2): 240-248. doi: 10.1002/path.1346
[92] Piccaluga PP, Agostinelli C, Righi S, et al. Expression of CD52 in peripheral T-cell lymphoma[J]. Haematologica, 2007, 92(4): 566-567. doi: 10.3324/haematol.10767
[93] Lindauer M, Hochhaus A. Dasatinib[J]. Recent Results Cancer Res, 2014, 201: 27-65.
[94] Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas[J]. Nat Med, 2012, 18(11): 1699-1704. doi: 10.1038/nm.2966
[95] Piccaluga PP, Rossi M, Agostinelli C, et al. Platelet-derived growth factor alpha mediates the proliferation of peripheral T-cell lymphoma cells via an autocrine regulatory pathway[J]. Leukemia, 2014, 28(8): 1687-1697. doi: 10.1038/leu.2014.50
[96] Barta SK, Zain J, Macfarlane AW, et al. Phase Ⅱ Study of the PD-1 Inhibitor Pembrolizumab for the Treatment of Relapsed or Refractory Mature T-cell Lymphoma[J]. Clin Lymphoma Myeloma Leuk, 2019, 19(6): 356-364. e3. doi: 10.1016/j.clml.2019.03.022
[97] Bennani NN, Kim HJ, Pederson LD, et al. Nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma: modest activity and cases of hyperprogression[J]. J Immunother Cancer, 2022, 10(6): e004984. doi: 10.1136/jitc-2022-004984
计量
- 文章访问数: 1521
- HTML全文浏览量: 483
- PDF下载量: 2009