高级搜索

肿瘤细胞外基质及盘状结构域受体1研究进展

熊逸潇, 杨盛力, 张万广

熊逸潇, 杨盛力, 张万广. 肿瘤细胞外基质及盘状结构域受体1研究进展[J]. 肿瘤防治研究, 2023, 50(8): 800-807. DOI: 10.3971/j.issn.1000-8578.2023.23.0247
引用本文: 熊逸潇, 杨盛力, 张万广. 肿瘤细胞外基质及盘状结构域受体1研究进展[J]. 肿瘤防治研究, 2023, 50(8): 800-807. DOI: 10.3971/j.issn.1000-8578.2023.23.0247
XIONG Yixiao, YANG Shengli, ZHANG Wanguang. Progress of Research on Tumor Extracellular Matrix and Discoidin Domain Receptor 1[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 800-807. DOI: 10.3971/j.issn.1000-8578.2023.23.0247
Citation: XIONG Yixiao, YANG Shengli, ZHANG Wanguang. Progress of Research on Tumor Extracellular Matrix and Discoidin Domain Receptor 1[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 800-807. DOI: 10.3971/j.issn.1000-8578.2023.23.0247

肿瘤细胞外基质及盘状结构域受体1研究进展

详细信息
    作者简介:

    熊逸潇(1994-),男,博士在读,主要从事肝细胞癌的分子机制研究,ORCID: 0000-0003-1573-4974

    通讯作者:

    张万广(1972-),男,博士,教授,主要从事肝脏恶性肿瘤的代谢改变、生物力学、肿瘤免疫及肿瘤精准治疗研究,E-mail: wgzhang@tjh.tjmu.edu.cn,ORCID: 0000-0003-3184-9907

  • 中图分类号: R730.2

Progress of Research on Tumor Extracellular Matrix and Discoidin Domain Receptor 1

More Information
  • 摘要:

    肿瘤细胞外基质(ECM)是肿瘤微环境的重要成分,ECM的多样化和复杂的相互作用构成了肿瘤微环境丰富的异质性,在肿瘤的生长、休眠、耐药和复发转移过程发挥了巨大作用。以DDR1为代表的细胞表面ECM受体,与不同ECM成分通过复杂的相互作用调控肿瘤的发生发展,在肿瘤防治和诊疗领域发挥越来越重要的价值。本文以肿瘤ECM和其受体DDR1为中心,探讨了ECM主要成分、调控方式、细胞受体和信号转导在肿瘤发展过程中的作用及其研究进展。

     

    Abstract:

    Tumor extracellular matrix (ECM) is the center component of tumor microenvironment (TME), ECM diversity constitutes the inherent heterogeneity of TME that contributes to tumor growth, dormancy, drug resistance, and metastasis. Discoidin domain receptor 1 is one of the ECM receptors that interact with multiple ECM ligands. It also regulates the occurrence and development of tumors. Accordingly, DDR1 plays an increasingly important role in the prevention, diagnosis, and treatment of cancer. In this review, we primarily summarize the research of ECM and its receptors with components, regulation, cell receptors, and signaling pathways in tumor progression.

     

  • 晚期肺癌患者5年生存率仅5%,但若能在早期诊断并治疗,5年存活率可达57%[1-2]。因此,结合肺癌危险因素及其临床特征建立肺癌危险度预测模型对早期诊断及治疗肺癌,提高患者5年生存率具有重要意义。近年来,数据挖掘技术已经在生物医学预测模型中得到广泛应用。人工神经网络(artificial neural network, ANN)具有良好的鲁棒性、高容错性和较强的归纳能力,而C5.0算法作为决策树模型的常用算法之一,适用于分类变量和大数据集[3]。因此,该研究拟将肺癌常见危险因素与临床症状相结合,采用C5.0决策树与ANN构建肺癌危险度预测模型,并评价两模型的性能优劣,为肺癌早期筛查及临床辅助诊断提供依据和工具。

    收集2014年10月至2016年10月郑州大学第一附属医院的住院患者样本420例,其中包括肺癌患者180例,肺良性疾病患者240例。入组患者均知情同意并自愿参加。

    入选标准:肺癌组:以《中华医学会肺癌临床诊疗指南(2019版)》为标准[4],经病理学或细胞学被证实为原发性肺癌患者;肺良性疾病组:由郑州大学第一附属医院诊断为肺部良性病变患者。排除标准:(1)入组前曾接受放化疗、药物治疗或手术治疗者;(2)主要脏器功能衰竭患者;(3)合并肺或其他恶性肿瘤患者;(4)妊娠或哺乳期患者;(5)不同意入组者。

    调查人员经过统一培训后,通过问卷访谈形式对患者进行调查询问获得数据资料,包括流行病学资料(疾病诊断、年龄、吸烟史、饮酒史、粉尘接触史、输血史、肺癌家族史、炎性反应史)和临床症状(咳嗽、咳痰、痰中带血、咯血、胸闷、胸痛、心慌、乏力、畏寒、发热出汗)。其中年龄根据《中华医学会肺癌临床诊疗指南(2019版)》以45岁为界限进行分组。总数据集包括18个定性变量(17个预测变量和1个因变量),因变量为诊断结果,各变量赋值见表 1

    表  1  肺癌危险度评价研究的变量赋值说明
    Table  1  Instructions of variables assignment in risk assessment studies of lung cancer
    下载: 导出CSV 
    | 显示表格

    应用SPSS21.0对420例样本数据进行统计分析,对所有变量进行描述性统计分析,采用χ2检验进行差异分析,检验水准α=0.05。

    使用SPSS Clementine 12.0软件建立两种数据挖掘预测模型,使用MedCalc15.10软件绘制受试者工作特征(receiver operating characteristic curve, ROC)曲线。将两组样本均按照7:3随机分为两部分,其中训练数据集包含302例样本,测试数据集包含118例样本。C5.0决策树模型和ANN模型的比较采用敏感度、特异性、准确度、阳性预测值(positive predictive values, PPV)、阴性预测值(positive and negative predictive values, NPV)、约登指数和ROC曲线下面积(area under ROC curve, AUC)进行评估。

    420例患者中,肺癌患者180例(42.9%),肺良性疾病患者240例(57.1%)。肺良性疾病患者中小于45岁者(63.8%)明显多于肺癌组(36.2%),差异有统计学意义(P=0.004)。肺癌患者中吸烟、饮酒者(57.1%、55.7%)均多于肺良性疾病患者(42.9%、44.3%)。肺癌组有粉尘接触史或肺癌家族史者分别仅2例。肺良性疾病组中有6例有输血史,而肺癌组中没有。10个临床症状变量中,肺癌组中痰中带血(64.0%)及胸痛(55.3%)的比例高于肺良性疾病患者(36.0%、44.7%)。两组样本的基线特征分析结果见表 2

    表  2  肺癌组和肺良性疾病组的样本基线特征及卡方检验(n(%))
    Table  2  Baseline characteristics and chi-square test of lung cancer and lung benign disease groups (n(%))
    下载: 导出CSV 
    | 显示表格

    两组间年龄(P=0.004)、吸烟史(P < 0.001)、饮酒史(P=0.028)、输血史(P=0.033)、炎症史(P < 0.001)、痰中带血(P=0.001)、胸痛(P=0.006)、乏力(P=0.049)和发热出汗(P < 0.001)9个因素差异有统计学意义,见表 2。此外由于既往研究提示粉尘接触史、癌症家族史、咳痰、咳嗽和咯血为肺癌的影响因素[4-5],该研究入选这14个因素作为输入变量建立风险预测模型。

    经过训练,C5.0决策树风险预测模型的参数设置如下:Use partitioned data: no, Output type: Decision Tree, Group symbolic: no, Use boosting: yes, Cross-validate: no, Mode: expert, Pruning severity: 75, Minimum records per child brunch: 2, Use global pruning: yes, Window attributes: no, Use misclassification costs: no。ANN风险预测模型的参数设置如下:Use partitioned data: yes, Method: prune, Prevent overtraining sample: 50%, Set random seed: 321, Stop on: time (mins) 1 min, Optimize: memory, Continue training existing model: no; Use binary set encoding: yes, Show feedback graph: yes, Model selection: Use best network, Mode: expert。

    两种模型训练集和测试集样本的分类结果见表 3。在训练集与测试集样本中C5.0模型的准确率分别为68.54%和61.0%,ANN模型的准确率分别为69.5%和65.3%。可以看出ANN模型在训练集和预测集中准确度均高于C5.0模型。根据两个数据挖掘模型的ROC曲线中各危险因素对应的AUC评估各自变量对模型的影响大小,重要性前10位影响因素排序见表 4。由表可知,对模型影响最大的三个影响因素在ANN模型中分别是吸烟史、痰中带血与胸痛;而在C5.0模型中分别是吸烟史、胸痛与年龄。在ANN模型和C5.0模型中吸烟均为最主要的影响因素。

    表  3  C5.0决策树和ANN模型的训练集和测试集样本分类结果
    Table  3  Classification results of training set and testing set samples by Decision tree C5.0 and ANN models
    下载: 导出CSV 
    | 显示表格
    表  4  C5.0决策树模型和ANN模型中纳入变量的重要性排序
    Table  4  Importance ranking of variables in Decision tree C5.0 model and ANN model
    下载: 导出CSV 
    | 显示表格

    两种数据挖掘模型对肺癌综合预测性能的相关指标包括准确度、约登指数、敏感度、特异性、预测值和AUC。其中C5.0决策树模型的特异性和NPV高于ANN模型,ANN模型预测模型的准确度、约登指数、敏感度、PPV和AUC均高于C5.0决策树模型,见表 5。测试集中两种数据挖掘模型的ROC曲线可发现ANN模型预测性能优于C5.0决策树模型,见图 1

    表  5  两种数据挖掘模型的测试集结果比较
    Table  5  Comparison of testing set results between two data mining models
    下载: 导出CSV 
    | 显示表格
    图  1  测试集中两种数据挖掘模型的ROC曲线
    Figure  1  ROC curves of two data mining models in testing set

    当前,肺癌的高发病率和高病死率已经造成巨大的公共卫生负担,利用肺癌的危险因素来预测肺癌危险度,对于肺癌的预防和早期筛查具有重要意义。本研究分别建立了C5.0决策树与ANN肺癌风险预测模型,比较发现,ANN模型预测性能优于C5.0决策树模型。

    本研究按照0.05的显著性水平,单因素检验发现有9个变量与肺癌患病率呈相关关系:5个流行病学变量中年龄、吸烟史、饮酒史、炎性反应史与肺癌患病率呈正相关,输血史与肺癌患病率呈负相关;4个临床症状中痰中带血、胸痛与肺癌患病率正相关,乏力和发热出汗与肺癌患病率存在负相关关系。同时,本研究的两种数据挖掘模型中吸烟均为关键影响变量。既往研究表明肺癌常见于70岁以上人群且发病率和死亡率随年龄增加而升高,同时吸烟、饮酒以及慢性炎性反应均为肺癌的危险因素之一[5],而围手术期输血对肺癌预后和复发的影响当前研究仍不一致[6],这与本研究结果基本相符。有研究显示,遗传因素与职业性粉尘接触也是肺癌的危险因素之一[7],这与本研究结果不符。

    决策树模型是一种由层次分类逐步构建的贪心算法,作为一种新兴的数据挖掘技术,它可以经过多次迭代演算后得到最优化的算法模型,具有较高的数据分析能力。相关研究已经将C5.0决策树模型用于利用基因表达数据和职业危险因素预测肺癌风险的模型建立[8-10]。C5.0算法作为决策树模型的常用算法之一,适用于分类变量和大数据集,已经在生物医学预测模型的建立中得到广泛应用。另外一些研究将C5.0决策树模型与其他多种研究进行比较,建立疾病风险预测模型,均得到C5.0决策树模型的预测性能最优的结果[11-12]

    ANN模型的数学结构模拟人类大脑的生物神经元学习动态,对输入变量经过训练产生一个加权组合的输出结果。ANN相比于一般统计学方法优势显著,具有良好的鲁棒性、高容错性和较强的归纳能力,可以快速识别线性模型、受阈值影响的非线性模型、分类模型、逐步线性模型,甚至偶然影响,故其可以确定潜在的预后影响因素[13]。已有研究将ANN应用于肺癌风险评估相关模型的构建[3, 14]。该研究结果同样显示ANN模型在准确度、敏感度、约登指数、阳性预测值、ROC曲线下面积均优于决策树模型[15-16],这与相关研究结果一致。因此,本研究建议利用ANN模型结合人群的流行病学资料和临床症状判别肺癌高危人群,为肺癌的早期诊断早期治疗提供参考依据[17]

    本研究仍然存在一定的局限性:一方面,纳入的样本量较少,如果能收集更大样本量和多中心样本资料,样本数据将具有更好的代表性,模型将具有更优异的性能;另一方面,纳入的变量种类有限,而与肺癌相关的危险因素众多且对肺癌存在交互作用,如果能纳入环境因素、职业因素、遗传因素、行为生活方式等多种研究变量,模型将更为准确可靠。因此,我们建议未来的研究应涵盖更大的样本量,纳入更为丰富的研究变量进行综合分析,同时将ANN模型应用于肺癌高危人群中筛查验证。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    熊逸潇:论文构思、撰写、校对
    杨盛力:论文修改、校对
    张万广:论文整体思路设计
  • 图  1   细胞外基质和相关细胞表面受体示意图

    Figure  1   Schematic of extracellular matrix and their cell surface receptors

    图  2   DDR1结构和功能示意图

    Figure  2   Schematic of DDR1 structure and function

  • [1]

    Ewald CY. The Matrisome during Aging and Longevity: A Systems-Level Approach toward Defining Matreotypes Promoting Healthy Aging[J]. Gerontology, 2020, 66(3): 266-274. doi: 10.1159/000504295

    [2]

    Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis[J]. Clin Exp Metastasis, 2019, 36(3): 171-198. doi: 10.1007/s10585-019-09966-1

    [3]

    Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment[J]. Signal Transduct Target Ther, 2021, 6(1): 153. doi: 10.1038/s41392-021-00544-0

    [4]

    Cox TR. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238. doi: 10.1038/s41568-020-00329-7

    [5]

    Fang M, Yuan J, Peng C, et al. Collagen as a double-edged sword in tumor progression[J]. Tumour Biol, 2014, 35(4): 2871-2882. doi: 10.1007/s13277-013-1511-7

    [6]

    Piersma B, Hayward M, Weaver VM. Fibrosis and cancer: A strained relationship[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188356. doi: 10.1016/j.bbcan.2020.188356

    [7]

    Provenzano PP, Eliceiri KW, Campbell JM, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Med, 2006, 4(1): 38. doi: 10.1186/1741-7015-4-38

    [8]

    Affo S, Nair A, Brundu F, et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations[J]. Cancer Cell, 2021, 39(6): 866-882. doi: 10.1016/j.ccell.2021.03.012

    [9]

    Di Martino JS, Nobre AR, Mondal C, et al. A tumor-derived type Ⅲ collagen-rich ECM niche regulates tumor cell dormancy[J]. Nat Cancer, 2022, 3(1): 90-107.

    [10]

    Chen Y, Kim J, Yang S, et al. Type Ⅰ collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer[J]. Cancer Cell, 2021, 39(4): 548-565. doi: 10.1016/j.ccell.2021.02.007

    [11]

    Cui Y, Miao C, Liu S, et al. Clusterin suppresses invasion and metastasis of testicular seminoma by upregulating COL15a1[J]. Mol Ther Nucleic Acids, 2021, 26: 1336-1350. doi: 10.1016/j.omtn.2021.11.004

    [12]

    Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases[J]. Polymers (Basel), 2022, 14(22): 5014. doi: 10.3390/polym14225014

    [13]

    Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans[J]. Matrix Biol, 2015, 42: 11-55. doi: 10.1016/j.matbio.2015.02.003

    [14]

    Chen C, Zhao S, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5

    [15]

    Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments[J]. Chem Rev, 2022, 122(20): 15603-15671. doi: 10.1021/acs.chemrev.1c01032

    [16]

    Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801.

    [17]

    Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis[J]. Matrix Biol, 2003, 22(1): 15-24. doi: 10.1016/S0945-053X(03)00006-4

    [18]

    Apte SS, Parks WC. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future[J]. Matrix Biol, 2015, 44-46: 1-6. doi: 10.1016/j.matbio.2015.04.005

    [19]

    Ye M, Song Y, Pan S, et al. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy[J]. Pharmacol Ther, 2020, 215: 107633. doi: 10.1016/j.pharmthera.2020.107633

    [20]

    Vlodavsky I, Singh P, Boyango I, et al. Heparanase: From basic research to therapeutic applications in cancer and inflammation[J]. Drug Resist Updat, 2016, 29: 54-75. doi: 10.1016/j.drup.2016.10.001

    [21]

    Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes[J]. Int J Mol Sci, 2019, 20(19): 4947. doi: 10.3390/ijms20194947

    [22]

    Alonso-nocelo M, Ruiz-cañas L, Sancho P, et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(2): 345-359. doi: 10.1136/gutjnl-2021-325564

    [23]

    Koorman T, Jansen KA, Khalil A, et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment[J]. Oncogene, 2022, 41(17): 2458-2469. doi: 10.1038/s41388-022-02258-1

    [24]

    Hu L, Wang J, Wang Y, et al. LOXL1 modulates the malignant progression of colorectal cancer by inhibiting the transcriptional activity of YAP[J]. Cell Commun Signal, 2020, 18(1): 148. doi: 10.1186/s12964-020-00639-1

    [25]

    Chitty JL, Setargew Y, Cox TR. Targeting the lysyl oxidases in tumour desmoplasia[J]. Biochem Soc Trans, 2019, 47(6): 1661-1678. doi: 10.1042/BST20190098

    [26]

    Ibrahim ZA, Armour CL, Phipps S, et al. RAGE and TLRs: Relatives, friends or neighbours?[J]. Mol Immunol, 2013, 56(4): 739-744. doi: 10.1016/j.molimm.2013.07.008

    [27]

    Ahmad S, Khan H, Siddiqui Z, et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer[J]. Semin Cancer Biol, 2018, 49: 44-55. doi: 10.1016/j.semcancer.2017.07.001

    [28]

    Haque E, Kamil M, Hasan A, et al. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis[J]. Glycobiology, 2020, 30(1): 2-18. doi: 10.1093/glycob/cwz073

    [29]

    Ge J, Cui H, Xie N, et al. Glutaminolysis Promotes Collagen Translation and Stability via α-Ketoglutarate–mediated mTOR Activation and Proline Hydroxylation[J]. Am J Respir Cell Mol Biol, 2018, 58(3): 378-390. doi: 10.1165/rcmb.2017-0238OC

    [30]

    Lee J, Condello S, Yakubov B, et al. Tissue Transglutaminase Mediated Tumor–Stroma Interaction Promotes Pancreatic Cancer Progression[J]. Clin Cancer Res, 2015, 21(19): 4482-4493. doi: 10.1158/1078-0432.CCR-15-0226

    [31]

    Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27. doi: 10.1016/j.addr.2015.11.001

    [32]

    Hynes RO, Naba A. Overview of the Matrisome-An Inventory of Extracellular Matrix Constituents and Functions[J]. Cold Spring Harb Perspect Biol, 2012, 4(1): a004903.

    [33]

    Kessenbrock K, Plaks V, Werb Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment[J]. Cell, 2010, 141(1): 52-67. doi: 10.1016/j.cell.2010.03.015

    [34]

    Juurikka K, Dufour A, Pehkonen K, et al. MMP8 increases tongue carcinoma cell–cell adhesion and diminishes migration via cleavage of anti-adhesive FXYD5[J]. Oncogenesis, 2021, 10(5): 44. doi: 10.1038/s41389-021-00334-x

    [35]

    Huu Hoang T, Sato-matsubara M, Yuasa H, et al. Cancer cells produce liver metastasis via gap formation in sinusoidal endothelial cells through proinflammatory paracrine mechanisms[J]. Sci Adv, 2022, 8(39): eabo5525. doi: 10.1126/sciadv.abo5525

    [36]

    Grieco M, Ursini O, Palamà IE, et al. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering[J]. Mater Today Bio, 2022, 17: 100453. doi: 10.1016/j.mtbio.2022.100453

    [37]

    Liu M, Tolg C, Turley E. Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment[J]. Front Immunol 2019, 10: 947. doi: 10.3389/fimmu.2019.00947

    [38]

    Jami M, Hou J, Liu M, et al. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness[J]. BMC Cancer, 2014, 14(1): 194. doi: 10.1186/1471-2407-14-194

    [39]

    Fatima K, Masood N, Ahmad Wani Z, et al. Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity[J]. J Adv Res, 2021, 34: 93-107. doi: 10.1016/j.jare.2021.06.003

    [40]

    Arai J, Otoyama Y, Nozawa H, et al. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: a review[J]. Oncogene, 2023, 42(8): 549-558. doi: 10.1038/s41388-022-02583-5

    [41]

    Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies[J]. Rev Physiol Biochem Pharmacol, 2023, 184: 69-120.

    [42]

    Kataoka H. EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments[J]. J Dermatol Sci, 2009, 56(3): 148-153. doi: 10.1016/j.jdermsci.2009.10.002

    [43]

    Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response[J]. Nat Rev Cancer, 2015, 15(12): 712-729. doi: 10.1038/nrc4027

    [44]

    Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond[J]. Matrix Biol, 2019, 75-76: 141-159. doi: 10.1016/j.matbio.2018.01.024

    [45]

    Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells[J]. Rep Prog Phys, 2019, 82(6): 64602. doi: 10.1088/1361-6633/ab1628

    [46]

    Zeke A, Lukács M, Lim WA, et al. Scaffolds: interaction platforms for cellular signalling circuits[J]. Trends in Cell Biol, 2009, 19(8): 364-374. doi: 10.1016/j.tcb.2009.05.007

    [47]

    Chaudhuri O, Gu L, Darnell M, et al. Substrate stress relaxation regulates cell spreading[J]. Nat Commun, 2015, 6: 6364. doi: 10.1038/ncomms7364

    [48]

    Chen YQ, Kuo JC, Wei MT, et al. Early stage mechanical remodeling of collagen surrounding head and neck squamous cell carcinoma spheroids correlates strongly with their invasion capability[J]. Acta Biomater, 2019, 84: 280-292. doi: 10.1016/j.actbio.2018.11.046

    [49]

    Kechagia JZ, Ivaska J, Roca-cusachs P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 457-473. doi: 10.1038/s41580-019-0134-2

    [50]

    Mas-moruno C, Fraioli R, Rechenmacher F, et al. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating[J]. Angew Chem Inter Ed Engl, 2016, 55(25): 7048-7067. doi: 10.1002/anie.201509782

    [51]

    Kuninty PR, Bansal R, De Geus SWL, et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer[J]. Sci Adv, 2019, 5(9): eaax2770. doi: 10.1126/sciadv.aax2770

    [52]

    Xiong J, Yan L, Zou C, et al. Integrins regulate stemness in solid tumor: an emerging therapeutic target[J]. J Hematol Oncol, 2021, 14(1): 177. doi: 10.1186/s13045-021-01192-1

    [53]

    Wang J, Xie S, Li N, et al. Matrix stiffness exacerbates the proinflammatory responses of vascular smooth muscle cell through the DDR1-DNMT1 mechanotransduction axis[J]. Bioact Mater, 2022, 17: 406-424. doi: 10.1016/j.bioactmat.2022.01.012

    [54]

    Peng DH, Rodriguez BL, Diao L, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion[J]. Nat Commun, 2020, 11(1): 4520. doi: 10.1038/s41467-020-18298-8

    [55]

    Barrow AD, Raynal N, Andersen TL, et al. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice[J]. J Clin Invest, 2011, 121(9): 3505-3516. doi: 10.1172/JCI45913

    [56]

    Nørregaard KS, Jürgensen HJ, Ingvarsen SZ, et al. The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1[J]. Matrix Biol, 2022, 111: 307-328. doi: 10.1016/j.matbio.2022.07.004

    [57]

    Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin receptors in epithelia[J]. Tissue Cell, 2019, 56: 71-78. doi: 10.1016/j.tice.2018.12.005

    [58]

    Ngai D, Mohabeer AL, Mao A, et al. Stiffness-responsive feedback autoregulation of DDR1 expression is mediated by a DDR1-YAP/TAZ axis[J]. Matrix Biol, 2022, 110: 129-140. doi: 10.1016/j.matbio.2022.05.004

    [59]

    Guo J, Zhang Z, Ding K. A patent review of discoidin domain receptor 1 (DDR1) modulators (2014-present)[J]. Expert Opin Ther Pat, 2020, 30(5): 341-350. doi: 10.1080/13543776.2020.1732925

    [60]

    Vogel WF, Aszódi A, Alves F, et al. Discoidin Domain Receptor 1 Tyrosine Kinase Has an Essential Role in Mammary Gland Development[J]. Mol Cell Biol, 2001, 21(8): 2906-2917. doi: 10.1128/MCB.21.8.2906-2917.2001

    [61]

    Ruggeri JM, Franco-Barraza J, Sohail A, et al. Discoidin Domain Receptor 1 (DDR1) Is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma[J]. Am J Pathol, 2020, 190(8): 1735-1751. doi: 10.1016/j.ajpath.2020.03.020

    [62]

    Dorison A, Dussaule J, Chatziantoniou C. The Role of Discoidin Domain Receptor 1 in Inflammation, Fibrosis and Renal Disease[J]. Nephron, 2017, 137(3): 212-220. doi: 10.1159/000479119

    [63]

    Rauner G, Jin DX, Miller DH, et al. Breast tissue regeneration is driven by cell-matrix interactions coordinating multi-lineage stem cell differentiation through DDR1[J]. Nat Commun, 2021, 12(1): 7116. doi: 10.1038/s41467-021-27401-6

    [64]

    Zhang X, Hu Y, Pan Y, et al. DDR1 promotes hepatocellular carcinoma metastasis through recruiting PSD4 to ARF6[J]. Oncogene, 2022, 41(12): 1821-1834. doi: 10.1038/s41388-022-02212-1

    [65]

    Pan Y, Han M, Zhang X, et al. Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway[J]. Cell Oncol, 2022, 45(1): 163-178. doi: 10.1007/s13402-022-00659-8

    [66]

    Hidalgo-Carcedo C, Hooper S, Chaudhry SI, et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6[J]. Nat Cell Biol, 2011, 13(1): 49-59. doi: 10.1038/ncb2133

    [67]

    Valencia K, Ormazábal C, Zandueta C, et al. Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) Reduces Cell Survival, Homing, and Colonization in Lung Cancer Bone Metastasis[J]. Clin Cancer Res, 2012, 18(4): 969-980. doi: 10.1158/1078-0432.CCR-11-1686

    [68]

    Sun X, Wu B, Chiang HC, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J]. Nature, 2021, 599(7886): 673-678. doi: 10.1038/s41586-021-04057-2

    [69]

    Berestjuk I, Lecacheur M, Carminati A, et al. Targeting Discoidin Domain Receptors DDR1 and DDR2 overcomes matrix‐mediated tumor cell adaptation and tolerance to BRAF‐targeted therapy in melanoma[J]. EMBO Mol Med, 2022, 14(2): e11814. doi: 10.15252/emmm.201911814

    [70]

    Nokin MJ, Darbo E, Travert C, et al. Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma[J]. JCI Insight, 2020, 5(15): e137869. doi: 10.1172/jci.insight.137869

    [71]

    Ye L, Pu C, Tang J, et al. Transmembrane-4 L-six family member-1 (TM4SF1) promotes non-small cell lung cancer proliferation, invasion and chemo-resistance through regulating the DDR1/Akt/ERK-mTOR axis[J]. Respir Res, 2019, 20(1): 106. doi: 10.1186/s12931-019-1071-5

  • 期刊类型引用(1)

    1. 黄普超,原慧洁,张桂芳. 基于数据挖掘技术的肺癌危险度预测模型的构建. 实用预防医学. 2022(11): 1390-1394 . 百度学术

    其他类型引用(2)

图(2)
计量
  • 文章访问数:  1970
  • HTML全文浏览量:  669
  • PDF下载量:  1918
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-04-13
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回
x 关闭 永久关闭