高级搜索

RNA修饰在胃癌发生发展中的作用机制研究进展

徐佳雯, 王强, 王守宇

徐佳雯, 王强, 王守宇. RNA修饰在胃癌发生发展中的作用机制研究进展[J]. 肿瘤防治研究, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
引用本文: 徐佳雯, 王强, 王守宇. RNA修饰在胃癌发生发展中的作用机制研究进展[J]. 肿瘤防治研究, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
XU Jiawen, WANG Qiang, WANG Shouyu. RNA Modification in Carcinogenesis and Development of Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
Citation: XU Jiawen, WANG Qiang, WANG Shouyu. RNA Modification in Carcinogenesis and Development of Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067

RNA修饰在胃癌发生发展中的作用机制研究进展

基金项目: 

国家自然科学基金 82273157

国家自然科学基金 82073114

国家自然科学基金 81903085

详细信息
    作者简介:

    徐佳雯(1997-),女,硕士,主要从事RNA表观遗传修饰调控消化道肿瘤发生发展的分子机制研究,ORCID: 0000-0002-7244-3607

    王守宇  博士,南京大学教授,博士生导师。江苏省杰出青年基金获得者,江苏省“333工程”培养对象,江苏高校“青蓝工程”中青年骨干教师,江苏省环境诱变剂学会理事。课题组主要围绕肿瘤表观遗传的基础研究和临床转化展开研究。以第一或通讯作者身份在Nature Cell BiologyNature CancerGutAdvanced ScienceThe Journal of Clinical InvestigationCell Research, Clinical Cancer ResearchNucleic Acids ResearchCancer Letters等杂志发表论文40余篇;ESI高被引论文2篇;主持国家自然科学基金5项和江苏省杰出青年科学基金等。曾获教育部高等学校自然科学奖二等奖1项和国际毒理学会青年学者奖

    通讯作者:

    王守宇(1982-),男,博士,教授,主要从事肿瘤表观遗传的基础和临床转化研究,E-mail: sywang@nju.edu.cn,ORCID:0000-0002-5415-7391

  • 中图分类号: R735.2

RNA Modification in Carcinogenesis and Development of Gastric Cancer

Funding: 

National Natural Science Foundation of China 82273157

National Natural Science Foundation of China 82073114

National Natural Science Foundation of China 81903085

More Information
  • 摘要:

    胃癌的发生与环境、遗传和表观遗传因素密切相关。目前,RNA修饰是表观遗传领域的研究前沿和热点。随着分析化学和高通量测序技术的进步,解析RNA修饰的新技术和新方法不断涌现。大量研究已经证实RNA修饰参与多种疾病的发生和发展。最近研究发现m6A、m5C、ac4C等RNA修饰调控胃癌、肝癌、结直肠癌、白血病等多种肿瘤的恶性进程。本文就RNA修饰在胃癌发生发展中的研究现状和作用机制作系统综述,并讨论其在胃癌诊断和治疗方面的潜在价值。

     

    Abstract:

    The occurrence of gastric cancer is closely related to environmental, genetic, and epigenetic factors. Currently, RNA modification is a research frontier and hotspot in the field of epigenetics. With the advancements in analytical chemistry and high-throughput sequencing technologies, new technologies and methods of exploring RNA modification are constantly being presented. Numerous studies have confirmed the involvement of RNA modifications in the occurrence and development of various diseases. Recent studies have shown that RNA modifications such as m6A, m5C, and ac4C regulate the malignant progression of various tumors, including gastric cancer, liver cancer, colorectal cancer, and leukemia. This article systematically reviews the research status and mechanism of different RNA modifications in the occurrence and development of gastric cancer, as well as discusses its potential value in the diagnosis and treatment of gastric cancer.

     

  • 宫颈小细胞神经内分泌癌(small cell neuroendocrine carcinoma, SCNEC)是一种较为罕见的原发于宫颈的神经内分泌性肿瘤,约占宫颈恶性肿瘤的1%~2%[1-2]。在各种类型的宫颈癌中,SCNEC是一种侵袭性强的病理类型[3-8]。但因为该类病例较少,目前尚无规范化的治疗。本研究对101例宫颈小细胞神经内分泌癌患者的临床病理资料及生存状况进行分析,旨在探讨SCNEC合理的治疗方案及预后相关因素,为此类患者治疗及预后判断提供临床依据。

    收集2007年1月—2018年6月在江西省妇幼保健院确诊并完成治疗的101例宫颈小细胞神经内分泌癌患者作为研究对象。患者确诊年龄25~73岁,中位年龄44岁,其中41~50岁者有40例。宫颈局部肿瘤直径 > 4 cm患者34例,≤4 cm患者67例。患者临床资料及年龄分布见表 1。所有患者均知情同意。

    表  1  101例SCNEC患者临床病理特征
    Table  1  Clinical and pathological features of 101 SCNEC patients
    下载: 导出CSV 
    | 显示表格

    (1)所有患者接受治疗前均经江西省妇幼保健院病理确诊为宫颈小细胞神经内分泌癌;(2)临床分期盆腔检查均经三位以上有经验的妇科肿瘤专业医师检查确定;(3)治疗前均未接受任何干预性治疗,且初始治疗及后续治疗均在同一机构完成;(4)纳入研究的患者治疗模式均为手术+术后补充放化疗(下文简称手术治疗组)或根治性放化疗,且按计划完成全部治疗;(5)全部患者术后病理检查均在同一医院完成;(6)建立了完整的病历档案,并持续随访,具备完整的住院及门诊复查病历资料。

    72例手术治疗患者手术方式为广泛子宫切除+盆腔淋巴结切除术±腹主动脉旁淋巴结切除术,其中47例行腹主动脉旁淋巴结切除术。69例行双附件切除,其余3例保留一侧卵巢且进行了保留卵巢的组织活检。

    放疗包括体外照射+腔内后装治疗,体外照射采用全盆腔体外照射+中央遮盖体外照射。体外照射剂量:全盆照射肿瘤剂量30~40 Gy,中央遮盖照射剂量15~25 Gy,放疗频率及强度:每周5次,每次分割剂量2 Gy。腔内后装采用高剂量率后装治疗设备,放射源为铱192。放疗剂量参照点A点累积剂量要求60~70 Gy;B点累积剂量要求54~56 Gy。放疗期间均给予铂类为基础的同步化疗。

    通过电话或门诊复查方式进行随访,截止时间为2018年9月。

    采用GraphPad7.0统计软件对不同组间患者生存率进行显著性比较。生存分析采用Kaplan-Meier法,生存率的比较采用Log rank检验。P < 0.05为差异有统计学意义。

    72例手术组患者中,2例失访,19例死亡,51例生存。19例死亡患者生存时间1~63月,中位生存时间19月,平均生存时间18.5月。51例生存的患者中,生存时间1~139月,中位生存时间39月,平均生存时间47.3月。随访5年以上共33例,生存20例,五年生存率60.6%。

    29例根治性放化疗患者中,随访5年以上20例,其中2例失访,死亡15例,生存3例,五年生存率15%。生存时间1~75月,中位生存时间21月。3例生存患者年龄分别为40岁、41岁、46岁,临床分期均为ⅡB期,病理均为单纯的宫颈小细胞神经内分泌癌,化疗方案均为多西他赛+卡铂,放疗给予根治性同步放化疗。ⅠB1期~ⅡA期手术治疗组患者生存率优于ⅡB期~Ⅳ期期根治性放化疗组患者(P=0.0025),见图 1

    图  1  手术组与放化疗组患者生存曲线图
    Figure  1  Survival curves of Surgery and CCRT groups

    72例接受手术治疗的患者均行宫颈癌根治术+盆腔淋巴结切除术,47例行腹主动脉旁淋巴结切除术,其中1例(1/47, 2.12%)腹主动脉旁淋巴结阳性。27例(27/72, 37.5%)盆腔淋巴结阳性。淋巴结阳性与阴性患者生存曲线比较差异有统计学意义,淋巴结阴性患者生存优于淋巴结阳性患者(P=0.0004),见图 2

    图  2  盆腔淋巴结阳性和阴性手术患者生存曲线
    Figure  2  Survival curves of surgical SCNEC patients with pelvic lymph node positive and negative

    72例手术治疗的患者中,按病理类型分,单纯SCNEC例41例,混合其他病理类型者31例,其中混合有腺癌19例,鳞癌9例,腺鳞癌3例。混合型与单纯型SCNEC生存曲线比较差异无统计学意义(P=0.0546),见图 3

    图  3  单纯型与混合型SCNEC生存曲线
    Figure  3  Survival curves of pure and mixed type SCNEC patients

    WHO分类将宫颈神经内分泌肿瘤分为低级别神经内分泌肿瘤(包括类癌及非典型类癌)和高级别神经内分泌肿瘤(包括小细胞神经内分泌癌和大细胞神经内分泌癌)。目前无公认的、规范有效的治疗方案,对于宫颈神经内分泌肿瘤多参照常见宫颈癌的分期治疗原则,主张手术、化疗和放疗的综合性治疗,但其治疗是否应有别于宫颈鳞癌需要更大样本、多中心的研究。美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)指南也将SCNEC列入特殊类型宫颈癌。

    关于SCNEC患者生存率及预后方面的研究,Ishikawa等的一项多中心研究显示淋巴血管间隙受侵是患者的总生存率及无进展生存率的重要预后因素,盆腔淋巴结转移是DFS的重要预后影响因素[9]。Cohen等研究发现Ⅰ~ⅡA、ⅡB~ⅣA、ⅣB期5年生存率分别为36.8%、9.8%和0[10],本研究结果显示临床分期与预后密切相关,各期别5年生存率均较以往文献报道略高。FIGO分期是较为公认的影响患者预后的最重要的独立危险因素[11-12]。由于SCNEC侵袭性强,易发生远处转移,有学者认为早期SCNEC患者手术联合化疗的预后优于单纯手术者[13-14]。本研究中ⅠB~ⅡA期患者均采用手术+放化疗综合治疗,5年总生存率60%以上,提示手术联合术后放化疗对此类患者疗效较好。

    宫颈小细胞神经内分泌癌早期容易发生转移,但从72例早期患者手术情况发现,仅1例(1.39%)发生卵巢转移。提示对于存在生育要求的年轻SCNEC患者,是否一定要行卵巢切除有待进一步研究证实。研究证实,SCNEC好发转移器官为肺、脑、肝,预后差[15-16]

    此外,几乎所有文献均支持此类肿瘤早期即容易发生远处转移,本研究资料中,死亡病例主要病因为肺转移、全身转移,临床观察也支持上述观点。关于淋巴结转移,有研究认为,即使是早期的SCNEC患者,淋巴结转移也非常普遍,淋巴结转移率为41.6%~57%[17]。本研究中,72例早期SCNEC患者手术后病理提示淋巴结转移22例,转移率37.5%,与文献报道接近,但是对于腹主动脉旁淋巴结,72例患者中47例患者行腹主动脉旁淋巴结活检或切除,仅1例发生腹主动脉旁淋巴结转移,转移率仅为2.13%,远低于盆腔淋巴结转移率。这一研究结果提示我们,即便是早期SCNEC患者,化疗对于控制转移也有重要的临床意义。

    与以往报道相比,本研究中手术患者术后均补充了放化疗,且均达到6个疗程,其中49例采用紫杉醇+铂类化疗方案,23例采用顺铂+环磷酰胺+表阿霉素化疗方案,提示手术后放化疗的必要性。

    总之,宫颈小细胞神经内分泌癌发病率低、恶性程度高、易发生远处转移和复发,患者预后差、死亡率高、有独特的病理特征,诊断主要依据病理诊断和免疫组织化学结果可提高其诊断的准确率。由于研究样本少,尚需大量的临床资料及多中心研究探索最佳早期诊断及治疗的方法。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    徐佳雯:论文构思和撰写
    王强:论文修改
    王守宇:论文指导、修改和审校
  • [1]

    Jemal A, Center MM, Desantis C, et al. Global patterns of cancer incidence and mortality rates and trends[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(8): 1893-907. doi: 10.1158/1055-9965.EPI-10-0437

    [2]

    Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648. doi: 10.1016/S0140-6736(20)31288-5

    [3]

    Peixoto P, Cartron PF, Serandour AA, et al. From 1957 to Nowadays: A Brief History of Epigenetics[J]. Int J Mol Sci, 2020, 21(20): 7571. doi: 10.3390/ijms21207571

    [4]

    Nebbioso A, Tambaro FP, Dell'aversana C, et al. Cancer epigenetics: Moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. doi: 10.1371/journal.pgen.1007362

    [5]

    Liang Z, Kidwell RL, Deng H, et al. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer[J]. Cancer Biol Med, 2020, 17(1): 9-19. doi: 10.20892/j.issn.2095-3941.2019.0347

    [6]

    Schumann U, Shafik A, Preiss T. METTL3 Gains R/W Access to the Epitranscriptome[J]. Mol Cell, 2016, 62(3): 323-324. doi: 10.1016/j.molcel.2016.04.024

    [7]

    Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95. doi: 10.1038/nchembio.1432

    [8]

    Pendleton KE, Chen B, Liu K, et al. The U6 snRNA mA Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention[J]. Cell, 2017, 169(5): 824-835. doi: 10.1016/j.cell.2017.05.003

    [9]

    Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. doi: 10.1038/cr.2014.3

    [10]

    Zhu W, Wang JZ, Wei JF, et al. Role of m6A methyltransferase component VIRMA in multiple human cancers (Review)[J]. Cancer Cell Int, 2021, 21(1): 172. doi: 10.1186/s12935-021-01868-1

    [11]

    Wen J, Lv R, Ma H, et al. Zc3h13 Regulates Nuclear RNA mA Methylation and Mouse Embryonic Stem Cell Self-Renewal[J]. Mol Cell, 2018, 69(6): 1028-1038. doi: 10.1016/j.molcel.2018.02.015

    [12]

    Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. doi: 10.1038/nature19342

    [13]

    Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. doi: 10.1038/nchembio.687

    [14]

    Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20: 347. doi: 10.1186/s12935-020-01450-1

    [15]

    Dai XY, Shi L, Li Z, et al. Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers[J]. Front Oncol, 2021, 11: 635329. doi: 10.3389/fonc.2021.635329

    [16]

    Huang H, Weng H, Sun W, et al. Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. doi: 10.1038/s41556-018-0045-z

    [17]

    Wu B, Su S, Patil DP, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1[J]. Nat Commun, 2018, 9(1): 420. doi: 10.1038/s41467-017-02770-z

    [18]

    Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. doi: 10.1038/s41580-019-0168-5

    [19]

    He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer[J]. Mol Cancer, 2019, 18(1): 176. doi: 10.1186/s12943-019-1109-9

    [20]

    Dai D, Wang H, Zhu L, et al. N6-methyladenosine links RNA metabolism to cancer progression[J]. Cell Death Dis, 2018, 9(2): 124. doi: 10.1038/s41419-017-0129-x

    [21]

    Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1): 104. doi: 10.1186/s12943-020-01216-3

    [22]

    Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1): 142. doi: 10.1186/s12943-019-1065-4

    [23]

    Lin S, Liu J, Jiang W, et al. METTL3 Promotes the Proliferation and Mobility of Gastric Cancer Cells[J]. Open Med (Wars), 2019, 14: 25-31. doi: 10.1515/med-2019-0005

    [24]

    Yang DD, Chen ZH, Yu K, et al. METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway[J]. Front Oncol, 2020, 10: 115. doi: 10.3389/fonc.2020.00115

    [25]

    Yang Z, Jiang X, Li D, et al. HBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A modification[J]. Aging (Albany NY), 2020, 12(24): 24967-24982.

    [26]

    Wang Q, Chen C, Ding Q, et al. METTL3-mediated mA modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. doi: 10.1136/gutjnl-2019-319639

    [27]

    Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis[J]. J Exp Clin Cancer Res, 2021, 40(1): 62. doi: 10.1186/s13046-021-01859-0

    [28]

    Huo FC, Zhu ZM, Zhu WT, et al. METTL3-mediated mA methylation of SPHK2 promotes gastric cancer progression by targeting KLF2[J]. Oncogene, 2021, 40(16): 2968-2981. doi: 10.1038/s41388-021-01753-1

    [29]

    Li H, Wang C, Lan L, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability[J]. Cell Mol Life Sci, 2022, 79(3): 135. doi: 10.1007/s00018-022-04129-0

    [30]

    He H, Wu W, Sun Z, et al. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit mA-caused stabilization of SEC62[J]. Biochem Biophys Res Commun, 2019, 517(4): 581-587. doi: 10.1016/j.bbrc.2019.07.058

    [31]

    Kang J, Huang X, Dong W, et al. MicroRNA-1269b inhibits gastric cancer development through regulating methyltransferase-like 3 (METTL3)[J]. Bioengineered, 2021, 12(1): 1150-1160. doi: 10.1080/21655979.2021.1909951

    [32]

    Zhang F, Yan Y, Cao X, et al. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer[J]. Aging (Albany NY), 2021, 13(8): 12224-12238.

    [33]

    Hu H, Kong Q, Huang XX, et al. Longnon-coding RNA BLACAT2 promotes gastric cancer progression via the miR-193b-5p/METTL3 pathway[J]. J Cancer, 2021, 12(11): 3209-3221. doi: 10.7150/jca.50403

    [34]

    Zhang JY, Du Y, Gong LP, et al. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3[J]. Cancer Lett, 2022, 535: 215646. doi: 10.1016/j.canlet.2022.215646

    [35]

    Geula S, Moshitch-moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006. doi: 10.1126/science.1261417

    [36]

    Liu X, Xiao M, Zhang L, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway[J]. J Clin Lab Anal, 2021, 35(3): e23655.

    [37]

    Yao Q, He L, Gao X, et al. The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma[J]. Front Oncol, 2021, 11: 699749. doi: 10.3389/fonc.2021.699749

    [38]

    Hu N, Ji H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis[J]. Bioengineered, 2021, 12(1): 4081-4091. doi: 10.1080/21655979.2021.1953210

    [39]

    Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated mA modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis[J]. Mol Cancer, 2022, 21(1): 51. doi: 10.1186/s12943-022-01521-z

    [40]

    Li H, Su Q, Li B, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration[J]. J Cell Mol Med, 2020, 24(8): 4452-4465. doi: 10.1111/jcmm.15104

    [41]

    Yu H, Zhao K, Zeng H, et al. N-methyladenosine (mA) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J]. Biomed Pharmacother, 2021, 133: 111075. doi: 10.1016/j.biopha.2020.111075

    [42]

    Wang XK, Zhang YW, Wang CM, et al. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer[J]. J Cell Mol Med, 2021, 25(14): 6602-6617. doi: 10.1111/jcmm.16664

    [43]

    Miao R, Dai CC, Mei L, et al. KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer[J]. J Cell Physiol, 2020, 235(10): 7420-7432. doi: 10.1002/jcp.29645

    [44]

    Yang D, Chang S, Li F, et al. mA transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1[J]. IUBMB Life, 2021, 73(11): 1325-1333. doi: 10.1002/iub.2545

    [45]

    Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43): 17963-17971. doi: 10.1021/ja3064149

    [46]

    Li Y, Zheng D, Wang F, et al. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer[J]. Dig Dis Sci, 2019, 64(6): 1503-1513. doi: 10.1007/s10620-018-5452-2

    [47]

    Guo C, Chu H, Gong Z, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278: 119522. doi: 10.1016/j.lfs.2021.119522

    [48]

    Yang Z, Jiang X, Zhang Z, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer[J]. Cancer Gene Ther, 2021, 28(1-2): 141-155. doi: 10.1038/s41417-020-0193-8

    [49]

    Zhou Y, Wang Q, Deng H, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via mA modification of caveolin-1 and metabolic regulation of mitochondrial dynamics[J]. Cell Death Dis, 2022, 13(1): 72. doi: 10.1038/s41419-022-04503-7

    [50] 皮静楠, 张杰, 王学鹏, 等. FTO在胃癌组织中的表达降低及其对细胞系MGC-803功能的影响[J]. 基础医学与临床, 2017, 7: 907-911. doi: 10.16352/j.issn.1001-6325.2017.07.001

    Pi JN, Zhang J, Wang XP, et al. Down-regulation of FTO in human gastric cancer and its effect on cell line MGC-803 function[J]. Ji Chu Yi Xue Yu Lin Chuang, 2017, 7: 907-911. doi: 10.16352/j.issn.1001-6325.2017.07.001

    [51]

    Xu D, Shao W, Jiang Y, et al. FTO expression is associated with the occurrence of gastric cancer and prognosis[J]. Oncol Rep, 2017, 38(4): 2285-2292. doi: 10.3892/or.2017.5904

    [52]

    Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. doi: 10.1016/j.molcel.2012.10.015

    [53]

    Zhang J, Guo S, Piao HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389. doi: 10.1007/s13105-019-00690-8

    [54]

    Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34. doi: 10.1186/s12943-022-01522-y

    [55]

    Liu T, Yang S, Cheng YP, et al. The N6-Methyladenosine (m6A) Methylation Gene Reveals a Potential Diagnostic Role for Gastric Cancer[J]. Cancer Manag Res, 2020, 12: 11953-11964. doi: 10.2147/CMAR.S279370

    [56]

    Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency[J]. Cell, 2015, 161(6): 1388-1399. doi: 10.1016/j.cell.2015.05.014

    [57]

    Pi J, Wang W, Ji M, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7[J]. Cancer Res, 2021, 81(10): 2651-2665. doi: 10.1158/0008-5472.CAN-20-0066

    [58]

    Chen XY, Liang R, Yi YC, et al. The mA Reader YTHDF1 Facilitates the Tumorigenesis and Metastasis of Gastric Cancer via USP14 Translation in an mA-Dependent Manner[J]. Front Cell Dev Biol, 2021, 9: 647702. doi: 10.3389/fcell.2021.647702

    [59]

    Shen X, Zhao K, Xu L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway[J]. Front Genet, 2020, 11: 592042.

    [60]

    Arango D, Sturgill D, Alhusaini N, et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency[J]. Cell, 2018, 175(7): 1872-1886. doi: 10.1016/j.cell.2018.10.030

    [61]

    Jin G, Xu M, Zou M, et al. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review[J]. Mol Ther Nucleic Acids, 2020, 20: 13-24. doi: 10.1016/j.omtn.2020.01.037

    [62]

    Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1[J]. Signal Transduct Target Ther, 2021, 6(1): 173. doi: 10.1038/s41392-021-00489-4

    [63]

    Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression[J]. J Exp Clin Cancer Res, 2023, 42(1): 9. doi: 10.1186/s13046-022-02586-w

    [64]

    Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. doi: 10.1093/nar/gkab378

    [65]

    Sendinc E, Valle-garcia D, Dhall A, et al. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression[J]. Mol Cell, 2019, 75(3) : 620-630.e9. doi: 10.1016/j.molcel.2019.05.030

    [66]

    Zhuo W, Sun M, Wang K, et al. m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation[J]. Cell Discov, 2022, 8(1): 48. doi: 10.1038/s41421-022-00395-1

    [67]

    Liu RJ, Long T, Li J, et al. Structural basis for substrate binding and catalytic mechanism of a human RNA: m5C methyltransferase NSun6[J]. Nucleic Acids Res, 2017, 45(11): 6684-6697. doi: 10.1093/nar/gkx473

    [68]

    Mei L, Shen C, Miao R, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57 by an mC-dependent manner[J]. Cell Death Dis, 2020, 11(4): 270. doi: 10.1038/s41419-020-2487-z

    [69]

    Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J]. Cell Death Dis, 2021, 12(9): 842. doi: 10.1038/s41419-021-04127-3

    [70]

    Yan J, Liu J, Huang Z, et al. FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells[J]. Hum Cell, 2021, 34(6): 1755-1764. doi: 10.1007/s13577-021-00583-3

    [71]

    Feng S, Qiu G, Yang L, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1): BSR20200842. doi: 10.1042/BSR20200842

    [72]

    Sun Y, Li S, Yu W, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer[J]. Cell Death Dis, 2020, 11(10): 836. doi: 10.1038/s41419-020-03049-w

    [73]

    Su R, Dong L, Li Y, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion[J]. Cancer Cell, 2020, 38(1): 79-96.e11. doi: 10.1016/j.ccell.2020.04.017

    [74]

    Meijing Z, Tianhang L, Biao Y. N6-Methyladenosine Modification Patterns and Tumor Microenvironment Immune Characteristics Associated With Clinical Prognosis Analysis in Stomach Adenocarcinoma[J]. Front Cell Dev Biol, 2022, 10: 913307. doi: 10.3389/fcell.2022.913307

    [75]

    Zhang B, Wu Q, Li B, et al. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. doi: 10.1186/s12943-020-01170-0

计量
  • 文章访问数:  1392
  • HTML全文浏览量:  626
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 修回日期:  2023-03-20
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回
x 关闭 永久关闭