高级搜索

RNA修饰在胃癌发生发展中的作用机制研究进展

徐佳雯, 王强, 王守宇

徐佳雯, 王强, 王守宇. RNA修饰在胃癌发生发展中的作用机制研究进展[J]. 肿瘤防治研究, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
引用本文: 徐佳雯, 王强, 王守宇. RNA修饰在胃癌发生发展中的作用机制研究进展[J]. 肿瘤防治研究, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
XU Jiawen, WANG Qiang, WANG Shouyu. RNA Modification in Carcinogenesis and Development of Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067
Citation: XU Jiawen, WANG Qiang, WANG Shouyu. RNA Modification in Carcinogenesis and Development of Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 738-744. DOI: 10.3971/j.issn.1000-8578.2023.23.0067

RNA修饰在胃癌发生发展中的作用机制研究进展

基金项目: 

国家自然科学基金 82273157

国家自然科学基金 82073114

国家自然科学基金 81903085

详细信息
    作者简介:

    徐佳雯(1997-),女,硕士,主要从事RNA表观遗传修饰调控消化道肿瘤发生发展的分子机制研究,ORCID: 0000-0002-7244-3607

    王守宇  博士,南京大学教授,博士生导师。江苏省杰出青年基金获得者,江苏省“333工程”培养对象,江苏高校“青蓝工程”中青年骨干教师,江苏省环境诱变剂学会理事。课题组主要围绕肿瘤表观遗传的基础研究和临床转化展开研究。以第一或通讯作者身份在Nature Cell BiologyNature CancerGutAdvanced ScienceThe Journal of Clinical InvestigationCell Research, Clinical Cancer ResearchNucleic Acids ResearchCancer Letters等杂志发表论文40余篇;ESI高被引论文2篇;主持国家自然科学基金5项和江苏省杰出青年科学基金等。曾获教育部高等学校自然科学奖二等奖1项和国际毒理学会青年学者奖

    通讯作者:

    王守宇(1982-),男,博士,教授,主要从事肿瘤表观遗传的基础和临床转化研究,E-mail: sywang@nju.edu.cn,ORCID:0000-0002-5415-7391

  • 中图分类号: R735.2

RNA Modification in Carcinogenesis and Development of Gastric Cancer

Funding: 

National Natural Science Foundation of China 82273157

National Natural Science Foundation of China 82073114

National Natural Science Foundation of China 81903085

More Information
  • 摘要:

    胃癌的发生与环境、遗传和表观遗传因素密切相关。目前,RNA修饰是表观遗传领域的研究前沿和热点。随着分析化学和高通量测序技术的进步,解析RNA修饰的新技术和新方法不断涌现。大量研究已经证实RNA修饰参与多种疾病的发生和发展。最近研究发现m6A、m5C、ac4C等RNA修饰调控胃癌、肝癌、结直肠癌、白血病等多种肿瘤的恶性进程。本文就RNA修饰在胃癌发生发展中的研究现状和作用机制作系统综述,并讨论其在胃癌诊断和治疗方面的潜在价值。

     

    Abstract:

    The occurrence of gastric cancer is closely related to environmental, genetic, and epigenetic factors. Currently, RNA modification is a research frontier and hotspot in the field of epigenetics. With the advancements in analytical chemistry and high-throughput sequencing technologies, new technologies and methods of exploring RNA modification are constantly being presented. Numerous studies have confirmed the involvement of RNA modifications in the occurrence and development of various diseases. Recent studies have shown that RNA modifications such as m6A, m5C, and ac4C regulate the malignant progression of various tumors, including gastric cancer, liver cancer, colorectal cancer, and leukemia. This article systematically reviews the research status and mechanism of different RNA modifications in the occurrence and development of gastric cancer, as well as discusses its potential value in the diagnosis and treatment of gastric cancer.

     

  • 目前,化学治疗仍是三阴性乳腺癌的主要治疗方法之一,但是肿瘤细胞对化疗药物的耐药性严重影响了治疗效果,化疗药物与肿瘤细胞的接触是诱导继发性耐药的主要原因[1]。由于阿霉素是乳腺癌化学方案的常用药物[2],本研究观察阿霉素对三阴性乳腺癌耐药性的诱导作用并探究其机制。

    ATP结合盒(ABC)转运蛋白在耐药的发展中起着至关重要的作用。ATP结合盒亚家族G成员2(ATP-binding cassette, sub-family G member 2, ABCG2)能排出大量异质化合物,导致耐药,引起治疗抵抗[3]。细胞耐药性的产生及耐药蛋白的表达受多种转录因子的调控。有研究报道cMyc能够调控包括ABCG2在内的ABC转运蛋白的表达[4]。cMyc是一个多功能的转录因子,参与调节细胞对阿霉素的敏感度[5],而cMyc的表达受其上游基因Stat3的调控。Stat3在肿瘤组织中异常激活,引发其下游靶基因cMyc转录,从而使正常细胞转化为癌细胞,并增加肿瘤细胞的耐药性[6]。因此,本研究观察阿霉素对MDA-MB-468细胞耐药性的诱导作用并探讨Stat3-cMyc通路是否介导了耐药性的发生。

    人乳腺癌MDA-MB-468细胞株购自美国标准细胞库(American type culture collections, ATCC)。本研究实验剂和仪器包括:RPMI 1640培养基(Hyclone,美国)、青霉素/链霉素(索莱宝,北京,中国)、胎牛血清(四季青,杭州,中国)、阿霉素(索莱宝,北京,中国)、RIPA裂解液/苯甲基磺酰氟(索莱宝,北京,中国)、聚偏二氟乙烯膜(Millipore,Billerica,美国)、ABCG2抗体(Abcam,Cambridge,美国)、WP1066抑制剂(Selleckchem,上海,中国)和二甲基亚砜(索莱宝,北京,中国)等。

    人乳腺癌MDA-MB-468细胞用含10%FBS和1%青霉素/链霉素的RPMI 1640在37℃、5%CO2培养箱中培养。以不同浓度的阿霉素(0、0.05、0.1和0.5 μmol/L)孵育细胞24 h,观察并筛选最适阿霉素浓度进行后续实验。

    细胞以3 000个/孔的密度接种至96孔板,然后分别加入终浓度为0、0.05、0.1和0.5 μmol/L的阿霉素。24 h后,每孔加入20 μl MTT溶液(5 mg/ml)继续培养4 h,吸弃培养液,每孔加150 μl DMSO溶液,振荡15 min后测定570 nm处的吸光度(OD570)。

    将盖玻片置于24孔板孔底,分别将MDA-MB-468和MDA-MB-468/ADM细胞以1×104个/孔接种,待细胞爬满盖玻片后进行免疫荧光染色。用PBS轻轻冲洗后在4%多聚甲醛中固定15 min。PBS洗涤爬片3次,山羊血清封闭1 h。将细胞用ABCG2一抗在4℃冰箱中孵育、过夜。PBS洗涤后,用二抗于37℃温育1 h。PBS洗涤细胞,用DAPI染色10 min,再次洗涤3次后滴加荧光防淬灭剂,观察免疫荧光染色并拍照。

    抽提各组细胞的总蛋白,利用BCA法测定总蛋白浓度,以每个泳道20 μg浓度的蛋白样品上样,经SDS-PAGE电泳后,利用半干电转化法将蛋白转移至PVDF膜上,经过封闭、一抗(稀释倍数1:1 000)孵育、TBST洗脱、HRP标记的二抗(稀释倍数1:5 000)孵育、TBST再洗脱等步骤后,用增强化学发光法检测信号及X线片曝光,并且经定影显影处理,获得清晰条带。

    运用SPSS13.0统计软件进行分析,所有结果采用(x±s)表示,组间均数的比较采用独立t检验(双侧),P < 0.05为差异有统计学意义。

    不同浓度阿霉素作用于MDA-MB-468细胞24 h后可见0.05 μmol/L与0.1 μmol/L浓度的阿霉素未引起细胞明显的损伤,大部分细胞生长良好。当浓度增加到0.5 μmol/L时,几乎所有细胞都受损,可见大量坏死细胞;MTT法测得在0.05 μmol/L、0.1 μmol/L及0.5 μmol/L浓度下阿霉素对MDA-MB-468细胞的抑制率分别为0.14、0.20、0.38,而且阿霉素对MDA-MB-468细胞的半数最大效应浓度(concentration for 50% of maximal effect, EC50)为0.94 μmol/L(P=0.038)。综合以上结果,我们选用0.1 μmol/L的阿霉素继续进行后续研究。

    用0.1 μmol/L的阿霉素持续刺激MDA-MB-468细胞4周后获得耐药细胞,命名为MDA-MB-468/ADM。MTT实验检测MDA-MB-468/ADM细胞对阿霉素敏感度,结果显示MDA-MB-468/ADM的EC50为5.2 μmol/L,较MDA-MB-468的EC50(0.94 μmol/L)显著升高(P=0.041),说明长期使用0.1 μmol/L的阿霉素后,MDA-MB-468细胞对阿霉素的敏感度显著下降,产生耐药,见图 1

    图  1  MTT测定经24h处理后的MDA-MB-468细胞与MDA-MB-468/ADM细胞对阿霉素的敏感度(x±s, n=3)
    Figure  1  Sensitivity of MDA-MB-468 and MDA-MB-468/ADM cells to adriamycin after 24h treatment detected by MTT assay (x±s, n=3)

    与正常MDA-MB-468细胞相比,MDA-MB-468/ADM细胞中代表ABCG2表达水平的红色荧光明显增多增强,见图 2A。Western blot检测结果也表明了MDA-MB-468/ADM细胞中ABCG2的高表达,见图 2B。提示用0.1 μmol/L阿霉素持续刺激后,三阴性乳腺癌MDA-MB-468细胞对阿霉素产生耐药。

    图  2  MDA-MB-468/ADM细胞中耐药蛋白ABCG2的表达
    Figure  2  Expression of drug resistance protein ABCG2 in MDA-MB-468/ADM cells
    A: Immunofluorescence staining results showed the increased expression of ABCG2 (red) in MDA-MB-468/ADM cells, staining with DAPI (blue); B: Western blot analysis results showed high expression of ABCG2 in MDA-MB-468/ADM cells (n=3, *: P < 0.05)

    为探究MDA-MB-468细胞对阿霉素产生耐药的机制,我们进一步检测了MDA-MB-468/ADM细胞中转录因子p-stat3与cMyc的表达水平,观察MDA-MB-468细胞对阿霉素耐药性的产生是否与Stat3-cMyc途径有关。Western blot结果显示,MDA-MB-468/ADM中p-Stat3与cMyc的表达均明显升高,而两组细胞中总的Stat3表达水平未见显著变化。这些结果表明Stat3的激活和cMyc表达的增多可能参与了MDA-MB-468细胞对阿霉素耐药性的产生,见图 3

    图  3  Western blot检测在MDA-MB-468和MDA-MB-468/ADM细胞中p-Stat3、Stat3及cMyc的表达(n=3, *: P < 0.05, **: P < 0.01)
    Figure  3  p-Stat3, Stat3 and cMyc expression in MDA-MB-468 and MDA-MB-468/ADM cells analyzed by Western blot (n=3, *: P < 0.05, **: P < 0.01)

    为进一步证明Stat3-cMyc途径在阿霉素诱导三阴性乳腺癌MDA-MB-468细胞耐药性产生中的作用,我们用Stat3磷酸化的抑制剂WP1066抑制Stat3活化,观察转录因子cMyc的表达是否受到影响。结果显示WP1066(1.25 μmol/L)作用于MDA-MB-468/ADM细胞后,磷酸化的Stat3显著降低(P=0.014),同时cMyc表达水平明显下降(P=0.044)。另外WP1066处理后MDA-MB-468/ADM细胞耐药蛋白ABCG2的表达也显著减少(P=0.000)。这些结果进一步说明阿霉素通过Stat3-cMyc途径诱导了MDA-MB-468细胞耐药性的产生,而抑制Stat3的活化后,耐药蛋白表达减少,细胞的耐药性减弱,见图 4

    图  4  Western blot检测MDA-MB-468、MDA-MB-468/ADM、MDA-MB-468/ADM/WP1066三组细胞中p-Stat3、Stat3、cMyc及ABCG2的表达
    Figure  4  Stat3, p-Stat3, cMyc and ABCG2 expression in MDA-MB-468, MDA-MB-468/ADM and MDA-MB-468/ADM/WP1066 cells analyzed by Western blot
    *: P < 0.05, **: P < 0.01 (x±s, n=3)

    由于WP1066下调了耐药蛋白ABCG2的表达,因此我们进一步通过MTT法检测MDA-MB-468/ADM细胞对阿霉素敏感度的变化。结果显示,阿霉素对MDA-MB-468/ADM细胞的EC50为6.774 μmol/L,而在使用WP1066之后的EC50降低至1.29 μmol/L(P=0.000),这表明WP1066抑制Stat3的活化增强了MDA-MB-468/ADM细胞对阿霉素的敏感度,见图 5

    图  5  MTT法检测经36 h处理后的MDA-MB-468、MDA-MB-468/ADM、MDA-MB-468/ADM/WP 1066三组细胞对阿霉素的敏感度(x±s, n=3)
    Figure  5  Sensitivity of MDA-MB-468, MDA-MB-468/ADM and MDA-MB-468/ADM/WP1066 cells to adriamycin after 36h treatment detected by MTT assay (x±s, n=3)

    目前肿瘤细胞的耐药性是临床治疗的难点与研究的热点,阐明肿瘤耐药的机制可以为肿瘤的治疗提供新的治疗方向和靶点。

    本研究应用低剂量阿霉素持续诱导人三阴性乳腺癌MDA-MB-468细胞,导致细胞产生耐药性,对阿霉素的敏感度显著下降,耐药蛋白ABCG2表达增高。为探究MDA-MB-468细胞对阿霉素产生耐药的机制,本实验进一步检测了MDA-MB-468/ADM细胞中转录因子p-stat3与cMyc的表达水平,观察MDA-MB-468细胞对阿霉素耐药性的产生与Stat3-cMyc途径有关。为进一步证明Stat3-cMyc途径在阿霉素诱导三阴性乳腺癌MDA-MB-468细胞耐药性产生中的作用,实验用Stat3磷酸化的抑制剂WP1066抑制Stat3活化,发现转录因子cMyc的表达也受到影响。进一步的机制研究揭示了Stat3-cMyc通路在阿霉素诱导的耐药中具有重要作用。

    文献报道,Stat3信号通路与肿瘤细胞对化疗的耐药性有关[7]。Stat3的激活可以帮助癌细胞逃避由药物引起的死亡,从而诱发耐药性。Yue等[8]证明了Stat3的过度活化可以促进顺铂耐药的卵巢癌进展,相反,如果抑制Stat3信号通路则会促进耐药性癌细胞的凋亡,增加癌细胞对各种药物的敏感度。Li等[9]研究也有相似的发现,抑制Stat3信号通路后人胃癌细胞的凋亡增强,耐药性减弱。那么Stat3在三阴性乳腺癌耐药性的产生中有何作用?文献报道,乳腺癌组织中Stat3的活化增强与乳腺癌的临床分期和侵袭转移密切相关[10]。多种致癌性细胞因子与细胞膜的相应受体结合后导致Stat3与酪氨酸磷酸化通道相偶联后被激活,激活后的Stat3可在核内与特异性DNA启动子相结合,调节cMyc、Oct4、Sox2等相关基因表达[11]。作为调节多种转录因子功能的重要枢纽,Stat3有望成为肿瘤基因治疗中的有效靶点。有研究表明,在肿瘤中cMyc的表达水平与耐药性有关[4, 12-13],cMyc能够调控ABC转运蛋白的表达水平,而ABCG2与肿瘤细胞的耐药性直接相关,但Stat3/cMyc在三阴性乳腺癌产生耐药性方面的影响及机制却未见报道。

    本研究发现低浓度(0.1 μmol/L)阿霉素持续刺激使MDA-MB-468细胞对阿霉素的敏感度明显降低,MDA-MB-468/ADM细胞中p-Stat3和cMyc的表达较MDA-MB-468细胞显著增加,这些发现与上述文献中对Stat3和cMyc在肿瘤耐药性中的作用相一致。另外,刘丽等[6]在喉鳞癌细胞的研究中也揭示了Stat3-cMyc通路的重要作用,与本研究的结果相吻合。由此推测,MDA-MB-468/ADM对阿霉素耐药的机制很可能与Stat3的激活和p-Stat3介导的cMyc表达的增多有关。为进一步证明Stat3-cMyc通路在阿霉素诱导的乳腺癌耐药性中的关键作用,本实验应用WP1066抑制MDA-MB-468/ADM中Stat3的活化,发现随着p-Stat3的降低,cMyc和ABCG2的表达也相应下降,这与Granato等[14]证实抑制Stat3信号可下调cMyc的表达一致。再次MTT检测发现WP1066作用后MDA-MB-468/ADM细胞对阿霉素的敏感度显著增强,这与Li等[9]研究结果一致。

    总之,本实验结果表明阿霉素可以诱导Stat3活化,上调转录因子cMyc及耐药蛋白ABCG2的表达,促进了三阴性乳腺癌MDA-MB-468细胞对阿霉素耐药性的产生。因此,抑制Stat3的表达与活化可有效逆转乳腺癌对阿霉素的耐药性,特异性靶向Stat3-cMyc途径联合化疗药物治疗有望成为一种有效治疗乳腺癌的新措施,改善乳腺癌患者的预后。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    徐佳雯:论文构思和撰写
    王强:论文修改
    王守宇:论文指导、修改和审校
  • [1]

    Jemal A, Center MM, Desantis C, et al. Global patterns of cancer incidence and mortality rates and trends[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(8): 1893-907. doi: 10.1158/1055-9965.EPI-10-0437

    [2]

    Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648. doi: 10.1016/S0140-6736(20)31288-5

    [3]

    Peixoto P, Cartron PF, Serandour AA, et al. From 1957 to Nowadays: A Brief History of Epigenetics[J]. Int J Mol Sci, 2020, 21(20): 7571. doi: 10.3390/ijms21207571

    [4]

    Nebbioso A, Tambaro FP, Dell'aversana C, et al. Cancer epigenetics: Moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. doi: 10.1371/journal.pgen.1007362

    [5]

    Liang Z, Kidwell RL, Deng H, et al. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer[J]. Cancer Biol Med, 2020, 17(1): 9-19. doi: 10.20892/j.issn.2095-3941.2019.0347

    [6]

    Schumann U, Shafik A, Preiss T. METTL3 Gains R/W Access to the Epitranscriptome[J]. Mol Cell, 2016, 62(3): 323-324. doi: 10.1016/j.molcel.2016.04.024

    [7]

    Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95. doi: 10.1038/nchembio.1432

    [8]

    Pendleton KE, Chen B, Liu K, et al. The U6 snRNA mA Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention[J]. Cell, 2017, 169(5): 824-835. doi: 10.1016/j.cell.2017.05.003

    [9]

    Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. doi: 10.1038/cr.2014.3

    [10]

    Zhu W, Wang JZ, Wei JF, et al. Role of m6A methyltransferase component VIRMA in multiple human cancers (Review)[J]. Cancer Cell Int, 2021, 21(1): 172. doi: 10.1186/s12935-021-01868-1

    [11]

    Wen J, Lv R, Ma H, et al. Zc3h13 Regulates Nuclear RNA mA Methylation and Mouse Embryonic Stem Cell Self-Renewal[J]. Mol Cell, 2018, 69(6): 1028-1038. doi: 10.1016/j.molcel.2018.02.015

    [12]

    Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. doi: 10.1038/nature19342

    [13]

    Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. doi: 10.1038/nchembio.687

    [14]

    Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20: 347. doi: 10.1186/s12935-020-01450-1

    [15]

    Dai XY, Shi L, Li Z, et al. Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers[J]. Front Oncol, 2021, 11: 635329. doi: 10.3389/fonc.2021.635329

    [16]

    Huang H, Weng H, Sun W, et al. Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. doi: 10.1038/s41556-018-0045-z

    [17]

    Wu B, Su S, Patil DP, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1[J]. Nat Commun, 2018, 9(1): 420. doi: 10.1038/s41467-017-02770-z

    [18]

    Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. doi: 10.1038/s41580-019-0168-5

    [19]

    He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer[J]. Mol Cancer, 2019, 18(1): 176. doi: 10.1186/s12943-019-1109-9

    [20]

    Dai D, Wang H, Zhu L, et al. N6-methyladenosine links RNA metabolism to cancer progression[J]. Cell Death Dis, 2018, 9(2): 124. doi: 10.1038/s41419-017-0129-x

    [21]

    Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1): 104. doi: 10.1186/s12943-020-01216-3

    [22]

    Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1): 142. doi: 10.1186/s12943-019-1065-4

    [23]

    Lin S, Liu J, Jiang W, et al. METTL3 Promotes the Proliferation and Mobility of Gastric Cancer Cells[J]. Open Med (Wars), 2019, 14: 25-31. doi: 10.1515/med-2019-0005

    [24]

    Yang DD, Chen ZH, Yu K, et al. METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway[J]. Front Oncol, 2020, 10: 115. doi: 10.3389/fonc.2020.00115

    [25]

    Yang Z, Jiang X, Li D, et al. HBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A modification[J]. Aging (Albany NY), 2020, 12(24): 24967-24982.

    [26]

    Wang Q, Chen C, Ding Q, et al. METTL3-mediated mA modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. doi: 10.1136/gutjnl-2019-319639

    [27]

    Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis[J]. J Exp Clin Cancer Res, 2021, 40(1): 62. doi: 10.1186/s13046-021-01859-0

    [28]

    Huo FC, Zhu ZM, Zhu WT, et al. METTL3-mediated mA methylation of SPHK2 promotes gastric cancer progression by targeting KLF2[J]. Oncogene, 2021, 40(16): 2968-2981. doi: 10.1038/s41388-021-01753-1

    [29]

    Li H, Wang C, Lan L, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability[J]. Cell Mol Life Sci, 2022, 79(3): 135. doi: 10.1007/s00018-022-04129-0

    [30]

    He H, Wu W, Sun Z, et al. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit mA-caused stabilization of SEC62[J]. Biochem Biophys Res Commun, 2019, 517(4): 581-587. doi: 10.1016/j.bbrc.2019.07.058

    [31]

    Kang J, Huang X, Dong W, et al. MicroRNA-1269b inhibits gastric cancer development through regulating methyltransferase-like 3 (METTL3)[J]. Bioengineered, 2021, 12(1): 1150-1160. doi: 10.1080/21655979.2021.1909951

    [32]

    Zhang F, Yan Y, Cao X, et al. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer[J]. Aging (Albany NY), 2021, 13(8): 12224-12238.

    [33]

    Hu H, Kong Q, Huang XX, et al. Longnon-coding RNA BLACAT2 promotes gastric cancer progression via the miR-193b-5p/METTL3 pathway[J]. J Cancer, 2021, 12(11): 3209-3221. doi: 10.7150/jca.50403

    [34]

    Zhang JY, Du Y, Gong LP, et al. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3[J]. Cancer Lett, 2022, 535: 215646. doi: 10.1016/j.canlet.2022.215646

    [35]

    Geula S, Moshitch-moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006. doi: 10.1126/science.1261417

    [36]

    Liu X, Xiao M, Zhang L, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway[J]. J Clin Lab Anal, 2021, 35(3): e23655.

    [37]

    Yao Q, He L, Gao X, et al. The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma[J]. Front Oncol, 2021, 11: 699749. doi: 10.3389/fonc.2021.699749

    [38]

    Hu N, Ji H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis[J]. Bioengineered, 2021, 12(1): 4081-4091. doi: 10.1080/21655979.2021.1953210

    [39]

    Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated mA modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis[J]. Mol Cancer, 2022, 21(1): 51. doi: 10.1186/s12943-022-01521-z

    [40]

    Li H, Su Q, Li B, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration[J]. J Cell Mol Med, 2020, 24(8): 4452-4465. doi: 10.1111/jcmm.15104

    [41]

    Yu H, Zhao K, Zeng H, et al. N-methyladenosine (mA) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J]. Biomed Pharmacother, 2021, 133: 111075. doi: 10.1016/j.biopha.2020.111075

    [42]

    Wang XK, Zhang YW, Wang CM, et al. METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer[J]. J Cell Mol Med, 2021, 25(14): 6602-6617. doi: 10.1111/jcmm.16664

    [43]

    Miao R, Dai CC, Mei L, et al. KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer[J]. J Cell Physiol, 2020, 235(10): 7420-7432. doi: 10.1002/jcp.29645

    [44]

    Yang D, Chang S, Li F, et al. mA transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1[J]. IUBMB Life, 2021, 73(11): 1325-1333. doi: 10.1002/iub.2545

    [45]

    Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43): 17963-17971. doi: 10.1021/ja3064149

    [46]

    Li Y, Zheng D, Wang F, et al. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer[J]. Dig Dis Sci, 2019, 64(6): 1503-1513. doi: 10.1007/s10620-018-5452-2

    [47]

    Guo C, Chu H, Gong Z, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278: 119522. doi: 10.1016/j.lfs.2021.119522

    [48]

    Yang Z, Jiang X, Zhang Z, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer[J]. Cancer Gene Ther, 2021, 28(1-2): 141-155. doi: 10.1038/s41417-020-0193-8

    [49]

    Zhou Y, Wang Q, Deng H, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via mA modification of caveolin-1 and metabolic regulation of mitochondrial dynamics[J]. Cell Death Dis, 2022, 13(1): 72. doi: 10.1038/s41419-022-04503-7

    [50] 皮静楠, 张杰, 王学鹏, 等. FTO在胃癌组织中的表达降低及其对细胞系MGC-803功能的影响[J]. 基础医学与临床, 2017, 7: 907-911. doi: 10.16352/j.issn.1001-6325.2017.07.001

    Pi JN, Zhang J, Wang XP, et al. Down-regulation of FTO in human gastric cancer and its effect on cell line MGC-803 function[J]. Ji Chu Yi Xue Yu Lin Chuang, 2017, 7: 907-911. doi: 10.16352/j.issn.1001-6325.2017.07.001

    [51]

    Xu D, Shao W, Jiang Y, et al. FTO expression is associated with the occurrence of gastric cancer and prognosis[J]. Oncol Rep, 2017, 38(4): 2285-2292. doi: 10.3892/or.2017.5904

    [52]

    Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. doi: 10.1016/j.molcel.2012.10.015

    [53]

    Zhang J, Guo S, Piao HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389. doi: 10.1007/s13105-019-00690-8

    [54]

    Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34. doi: 10.1186/s12943-022-01522-y

    [55]

    Liu T, Yang S, Cheng YP, et al. The N6-Methyladenosine (m6A) Methylation Gene Reveals a Potential Diagnostic Role for Gastric Cancer[J]. Cancer Manag Res, 2020, 12: 11953-11964. doi: 10.2147/CMAR.S279370

    [56]

    Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency[J]. Cell, 2015, 161(6): 1388-1399. doi: 10.1016/j.cell.2015.05.014

    [57]

    Pi J, Wang W, Ji M, et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7[J]. Cancer Res, 2021, 81(10): 2651-2665. doi: 10.1158/0008-5472.CAN-20-0066

    [58]

    Chen XY, Liang R, Yi YC, et al. The mA Reader YTHDF1 Facilitates the Tumorigenesis and Metastasis of Gastric Cancer via USP14 Translation in an mA-Dependent Manner[J]. Front Cell Dev Biol, 2021, 9: 647702. doi: 10.3389/fcell.2021.647702

    [59]

    Shen X, Zhao K, Xu L, et al. YTHDF2 Inhibits Gastric Cancer Cell Growth by Regulating FOXC2 Signaling Pathway[J]. Front Genet, 2020, 11: 592042.

    [60]

    Arango D, Sturgill D, Alhusaini N, et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency[J]. Cell, 2018, 175(7): 1872-1886. doi: 10.1016/j.cell.2018.10.030

    [61]

    Jin G, Xu M, Zou M, et al. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review[J]. Mol Ther Nucleic Acids, 2020, 20: 13-24. doi: 10.1016/j.omtn.2020.01.037

    [62]

    Zhang Y, Jing Y, Wang Y, et al. NAT10 promotes gastric cancer metastasis via N4-acetylated COL5A1[J]. Signal Transduct Target Ther, 2021, 6(1): 173. doi: 10.1038/s41392-021-00489-4

    [63]

    Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression[J]. J Exp Clin Cancer Res, 2023, 42(1): 9. doi: 10.1186/s13046-022-02586-w

    [64]

    Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. doi: 10.1093/nar/gkab378

    [65]

    Sendinc E, Valle-garcia D, Dhall A, et al. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression[J]. Mol Cell, 2019, 75(3) : 620-630.e9. doi: 10.1016/j.molcel.2019.05.030

    [66]

    Zhuo W, Sun M, Wang K, et al. m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation[J]. Cell Discov, 2022, 8(1): 48. doi: 10.1038/s41421-022-00395-1

    [67]

    Liu RJ, Long T, Li J, et al. Structural basis for substrate binding and catalytic mechanism of a human RNA: m5C methyltransferase NSun6[J]. Nucleic Acids Res, 2017, 45(11): 6684-6697. doi: 10.1093/nar/gkx473

    [68]

    Mei L, Shen C, Miao R, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57 by an mC-dependent manner[J]. Cell Death Dis, 2020, 11(4): 270. doi: 10.1038/s41419-020-2487-z

    [69]

    Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J]. Cell Death Dis, 2021, 12(9): 842. doi: 10.1038/s41419-021-04127-3

    [70]

    Yan J, Liu J, Huang Z, et al. FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells[J]. Hum Cell, 2021, 34(6): 1755-1764. doi: 10.1007/s13577-021-00583-3

    [71]

    Feng S, Qiu G, Yang L, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1): BSR20200842. doi: 10.1042/BSR20200842

    [72]

    Sun Y, Li S, Yu W, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer[J]. Cell Death Dis, 2020, 11(10): 836. doi: 10.1038/s41419-020-03049-w

    [73]

    Su R, Dong L, Li Y, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion[J]. Cancer Cell, 2020, 38(1): 79-96.e11. doi: 10.1016/j.ccell.2020.04.017

    [74]

    Meijing Z, Tianhang L, Biao Y. N6-Methyladenosine Modification Patterns and Tumor Microenvironment Immune Characteristics Associated With Clinical Prognosis Analysis in Stomach Adenocarcinoma[J]. Front Cell Dev Biol, 2022, 10: 913307. doi: 10.3389/fcell.2022.913307

    [75]

    Zhang B, Wu Q, Li B, et al. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. doi: 10.1186/s12943-020-01170-0

计量
  • 文章访问数:  1345
  • HTML全文浏览量:  615
  • PDF下载量:  721
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 修回日期:  2023-03-20
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回
x 关闭 永久关闭