Abstract:
Objective To evaluate predictive factors affecting the short-term efficacy of PD-1 inhibitors in non-small cell lung cancer (NSCLC) and to construct a prediction model.
Methods From October 2019 to November 2021, 221 patients with advanced NSCLC who met the inclusion criteria and were treated with PD-1 inhibitors were prospectively enrolled. Patients who were enrolled before May 1st, 2021 were included inthe modeling group (n=149), whereas those who enrolled thereafter were included in the validation group (n=72). The general clinical data of patients, information of the four TCM diagnoses were collected, and TCM syndrome elements were identified. R software version 4.0.4 was used in constructing a nomogram clinical prediction model of objective response rate. The predictive ability and discrimination of the model were evaluated and externally validated by using a validation group.
Results After two to four cycles of PD-1 inhibitor therapy in 221 patients, the overall objective response rate was 44.80%. Multivariate logistic regression analysis of the modeling group showed that the TPS score (OR=0.261, P=0.001), number of treatment lines (OR=3.749, P=0.002), treatment mode (OR=2.796, P=0.019), qi deficiency disease syndrome elements (OR=2.296, P=0.043), and syndrome elements of yin deficiency disease (OR=3.228, P=0.005) were the independent predictors of the short-term efficacy of PD-1 inhibitors. Based on the above five independent predictors, a nomogram prediction model for the short-term efficacy of PD-1 inhibitors was constructed. The AUC values of the modeling and validation groups were 0.8317 and 0.7535, respectively. The calibration curves of the two groups showed good agreement between the predicted and true values. The mean absolute errors were 0.053 and 0.039, indicating that the model has good predictive performance.
Conclusion The nomogram model constructed on the basis of the syndrome elements of Qi-deficiency disease and Yin-deficiency syndrome of TCM, as well as TPS score, number of treatment lines and treatment mode, is a stable and effective tool for predicting the short-term efficacy of PD-1 inhibitors in advanced non-small cell lung cancer.