高级搜索

三阴性乳腺癌遗传易感性研究进展

张丽佳, 刘佳芮, 张沅, 陈薪宇, 王信, 张怡

张丽佳, 刘佳芮, 张沅, 陈薪宇, 王信, 张怡. 三阴性乳腺癌遗传易感性研究进展[J]. 肿瘤防治研究, 2023, 50(8): 794-799. DOI: 10.3971/j.issn.1000-8578.2023.22.1463
引用本文: 张丽佳, 刘佳芮, 张沅, 陈薪宇, 王信, 张怡. 三阴性乳腺癌遗传易感性研究进展[J]. 肿瘤防治研究, 2023, 50(8): 794-799. DOI: 10.3971/j.issn.1000-8578.2023.22.1463
ZHANG Lijia, LIU Jiarui, ZHANG Yuan, CHEN Xinyu, WANG Xin, ZHANG Yi. Research Progress on Genetic Susceptibility to Triple-Negative Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 794-799. DOI: 10.3971/j.issn.1000-8578.2023.22.1463
Citation: ZHANG Lijia, LIU Jiarui, ZHANG Yuan, CHEN Xinyu, WANG Xin, ZHANG Yi. Research Progress on Genetic Susceptibility to Triple-Negative Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 794-799. DOI: 10.3971/j.issn.1000-8578.2023.22.1463

三阴性乳腺癌遗传易感性研究进展

基金项目: 

国家自然科学基金 82060620

国家自然科学基金 31960209

详细信息
    作者简介:

    张丽佳(1998-),女,硕士在读,主要从事流行病与卫生统计学研究;ORCID: 0000-0002-2646-7501

    通讯作者:

    王信(1984-),男,博士,主任医师,主要从事骨缺损愈合研究,E-mail: lchwx@aliyun.com,ORCID: 0000-0001-5015-3396

    张怡(1987-),女,博士,副教授,主要从事分子流行病学研究,E-mail: 87027027@qq.com,ORCID: 0000-0003-2933-1818

  • 中图分类号: R737.9

Research Progress on Genetic Susceptibility to Triple-Negative Breast Cancer

Funding: 

National Natural Science Foundation of China 82060620

National Natural Science Foundation of China 31960209

More Information
  • 摘要:

    三阴性乳腺癌(TNBC)是一类治疗困难、预后较差、术后早期易复发且易转移的乳腺癌。发病呈低龄化趋势,种族差异大,具有明显的遗传易感性,因此迫切需要阐明TNBC的遗传风险因素,找到精准的治疗靶点。不同亚型的TNBC之间很难找到可靠的特征性基因及其多态性。为制定有效的TNBC预防策略及找寻有效的治疗靶点,现系统综述近年来与不同亚型TNBC相关的易感基因及其多态性,以期找到可靠的生物标志物,为针对特定分子途径的药物研发提供新的思路。

     

    Abstract:

    Triple-negative breast cancer (TNBC) is a type of breast cancer that is difficult to treat, has a poor prognosis, and is prone to recurrence and metastasis in the early postoperative period. The age of patients is tending younger, and the racial difference is large. It is also related to family history, and genetic susceptibility is obvious. So, elucidating the genetic risk factors of TNBC and obtaining precise therapeutic targets are urgent tasks. Obtaining reliable characteristic genes and their polymorphisms between TNBC of different subtypes is difficult. This review summarizes the susceptibility genes and the polymorphisms of TNBC susceptibility genes of different molecular subtypes, in order to develop effective TNBC prevention strategies and find effective therapeutic targets. This review provides a theoretical basis for promoting the study of TNBC from the perspective of genetics.

     

  • 食管癌是常见的消化道疾病,为世界八大恶性肿瘤之一[1]。2012年间全世界范围内就有45.58万新增食管癌病例,死亡数40万人,东亚、非洲东部和南部是食管癌最严重地区[2]。目前食管癌治疗的主要方法仍然为外科手术[3]。高复发率仍然是一个亟待解决的问题。为此,越来越多的人趋向于多种疗法结合的策略,可将外科手术与化学疗法、放射疗法及放化疗法进行结合。在日本,用顺铂(CDDP)和5-氟尿嘧啶(5-Fu)进行化疗后再实施外科手术已经成为可切除食管癌的一种标准疗法[4]。对于不可切除的食管癌,化学疗法和放化疗法则成为标准治疗方案,目前被广泛认可的食管癌化学治疗药物仅有多烯紫杉醇(TxT)、CDDP和5-Fu[5]。因此,不论是可切除还是不可切除的食管癌,化学治疗药物都有着不可替代的作用,寻找更多的有效化学治疗药物对食管癌的治疗具有重要意义。芦荟是常见的多年生草本植物,易于种植。其用途十分广泛,在急性创伤、炎症反应、糖尿病、溃疡以及免疫调节等方面都发挥着积极作用[6]。本文就芦荟苷对食管鳞状细胞癌增殖、凋亡和侵袭进行了体外探讨,为发掘新的食管癌化疗药物提供理论参考。

    食管癌细胞系KESY70购自美国典型培养物保藏中心(American Type Culture Collection, ATCC)。RPMI 1640培养液和胎牛血清购自美国赛默飞世尔科技公司。芦荟苷购自美国Sigma公司,用DMSO进行溶解制成母液。Cell Counting Kit-8(CCK-8)购自日本同仁化学公司,细胞凋亡检测试剂盒Annexin V Apoptosis Detection Kit和Transwell小室及人工基底膜均购自美国BD公司。

    食管癌KESY70细胞培养于含10%胎牛血清和100 u/ml青-链霉素的RPMI 1640培养液中,并置于37℃、5%CO2的恒温培养箱中。食管癌KESY70细胞随机分为5组:未处理对照组(KESY70)、对照组(DMSO)和芦荟苷(10、40、80 μmol/L)组。

    食管癌细胞KESY70加入10、20、40、80和120 μmol/L的芦荟苷,添加DMSO为对照组。孵育24 h后,CCK-8法检测不同浓度下食管癌KESY70细胞的存活率。用10、40和80 μmol/L的芦荟苷处理食管癌KESY70细胞,分别于0、24、48、72和96 h检测细胞增殖倍数。

    分别收集不同浓度(终浓度为:10、40和80 μmol/L)芦荟苷处理的细胞,制成1×106个每毫升的细胞悬液。FITC/PI染色15 min,利用流式细胞仪对染色的细胞进行检测,统计细胞凋亡率。

    细胞悬浮于含1%胎牛血清的RPMI 1640培养液中并添加芦荟苷至终浓度为10、40和80 μmol/L,制成细胞密度为1×106个每毫升的细胞悬液。将细胞悬液加入到铺有人工基底膜的Transwell小室的上室中,下室加入含20%胎牛血清的RPMI 1640培养液。37℃、5%CO2的恒温培养箱中培养24 h后,0.5%的结晶紫染色后显微镜下观察细胞形态并随机选取5个视野统计细胞数量。

    收集经芦荟苷处理的细胞,PBS洗3次后加入含蛋白酶抑制剂的细胞裂解液进行总蛋白的提取。然后进行SDS-PAGE凝胶电泳分离,再将蛋白转至PVDF膜。经5%的BSA封闭后,依次孵育相应的一抗和二抗,最后进行显色。统计灰度值计算相对表达量。

    实验数据的统计学分析用SPSS16.0软件进行。两两比较用独立的t检验。P < 0.05为差异有统计学意义。

    加入10和20 μmol/L芦荟苷的食管癌细胞KESY70的存活率与DMSO组差异无统计学意义(P=0.623);当芦荟苷浓度达到40 μmol/L时,食管癌细胞KESY70的存活率降低更明显(P=0.036);芦荟苷浓度再增加至80和120 μmol/L时,食管癌细胞KESY70的存活率明显的降低(P=0.008),见图 1。可见,较低浓度的芦荟苷对食管癌KESY70细胞活力并无影响,但随着芦荟苷浓度的升高,食管癌细胞KESY70的活力也随之降低。

    图  1  CCK-8法检测KYSE70细胞存活率
    Figure  1  Viability of KYSE70 cells detected by CCK-8
    *: P < 0.05; **: P < 0.01, compared with DMSO group

    低浓度(10 μmol/L)的芦荟苷不会影响KESY70的增殖能力;中浓度(40 μmol/L)的芦荟苷添加3 d后,KESY70细胞的增殖受到了明显抑制(P < 0.05);更高浓度(80 μmol/L)的芦荟苷作用3 d后,KESY70细胞增殖倍数显著低于DMSO组(P < 0.05),见图 2。表明当芦荟苷达到一定浓度时,食管癌细胞系KESY70的增殖能力会明显减弱,呈时间-剂量依赖性。

    图  2  CCK-8检测KYSE70细胞增殖
    Figure  2  Proliferation of KYSE70 cells measured by CCK-8
    *: P < 0.05, compared with DMSO group

    向食管癌细胞KESY70添加芦荟苷至终浓度为10、40和80 μmol/L,运用流式细胞术检测芦荟苷对KESY70细胞凋亡的影响。10 μmol/L的芦荟苷明显地增加KESY70细胞凋亡率(P < 0.05);40和80 μmol/L的芦荟苷十分显著地增加细胞凋亡率(P < 0.01),见图 3。由此可见,一定浓度的芦荟苷具有促进KESY70细胞凋亡的功能。

    图  3  流式细胞术分析KYSE70细胞凋亡
    Figure  3  Apoptosis of KYSE70 cells tested by flow cytometry
    *: P < 0.05; **: P < 0.01, compared with DMSO group

    结晶紫染色后,通过显微镜下计数分析发现,10 μmol/L的芦荟苷明显地降低了KESY70细胞的侵袭能力(P < 0.05);40和80 μmol/L的芦荟苷则十分显著地降低了KESY70细胞的侵袭能力(P < 0.01),表明添加芦荟苷可以抑制食管癌细胞KESY70的侵袭能力,见图 4

    图  4  Transwell分析KYSE70细胞侵袭(结晶紫染色×100)
    Figure  4  Invasion of KYSE70 cells tested by Transwell assay (crystal violet staining ×100)
    *: P < 0.05; **: P < 0.01, compared with DMSO group

    从蛋白印迹的结果图可以看出,芦荟苷可以抑制细胞增殖标记蛋白PCNA和侵袭标记蛋白MMP-9的表达;促进细胞凋亡标记蛋白Cleaved caspase-3的表达,见图 5A。与DMSO组相比,10和40 μmol/L加药组的细胞增殖标记蛋白PCNA的表达明显减弱(P < 0.05);80 μmol/L的表达显著降低(P < 0.01),见图 5B。10 μmol/L加药组细胞凋亡标记蛋白Cleaved caspase-3的表达明显高于DMSO组(P < 0.05);40和80 μmol/L的蛋白表达量明显升高(P < 0.01),见图 5C。加药组10、40和80 μmol/L的侵袭标记蛋白MMP-9的表达均降低,与DMSO组存在显著差异(P < 0.01),见图 5D。证明芦荟苷具有抑制食管癌细胞KESY70增殖和侵袭、促进细胞凋亡的作用。

    图  5  蛋白印记检测PCNA、Cleaved caspase-3、MMP-9蛋白的表达
    Figure  5  Expressions of PCNA、Cleaved caspase-3 and MMP-9 protein measured by Western blot
    *: P < 0.05; **: P < 0.01, compared with DMSO group; A: 1: KYSE70; 2: DMSO; 3: Aloin(10μmol/L); 4: Aloin(40μmol/L); 5: Aloin(80μmol/L)

    细胞增殖的不受控是各类癌症的主要特征[7]。芦荟苷作为芦荟的有效药用成分之一,对多种癌症细胞的增殖具有一定的影响。有研究报道, > 140 μmol/L的芦荟苷还可以明显降低宫颈癌细胞HeLaS3的存活能力[8]。Ming-Chin等发现用150和200 μmol/L的芦荟苷处理肺癌细胞72 h后,细胞存活能力降低了50% [9]。本研究结果显示, > 40 μmol/L的芦荟苷处理食管癌细胞KYSE70会导致食管癌KYSE70细胞活力和增殖能力降低。

    许多疾病中都会出现细胞凋亡的异常[10]。据报道芦荟苷在调节各类疾病的细胞凋亡方面发挥着积极作用。有数据显示芦荟苷可以促进结直肠癌细胞凋亡[11],还可诱导非小细胞肺癌A549细胞凋亡[12]。Wang等发现高分子纳米粒装载的芦荟苷可增强胃癌细胞凋亡[13]。本文结果显示, > 10 μmol/L的芦荟苷可有效促进食管癌细胞KYSE70的凋亡。

    癌细胞的侵袭能力在癌症的发生发展进程中至关重要,越来越多的研究表明芦荟苷具有抑制癌细胞侵袭的功效。Pan等发现芦荟苷可减弱结直肠癌细胞的侵袭能力[11]。有数据显示,500 μmol/L的芦荟苷可以有效降低黑色素瘤细胞B16-F10的侵袭能力[14]。另外,芦荟苷处理还可减弱非小细胞肺癌细胞侵袭[15]。本研究检测了10、40和80 μmol/L芦荟苷对食管癌细胞KYSE70侵袭能力的影响,发现食管癌细胞KYSE70侵袭能力会随着芦荟苷浓度的升高而降低。

    许多蛋白质在细胞增殖,凋亡及侵袭中起着重要的调控作用。如Ki67、PCNA、Caspase及MMPs等[16-18]。大量数据表明芦荟苷具有调控细胞增殖、凋亡及侵袭相关蛋白表达的功能。据报道芦荟苷可降低结肠癌中增殖相关蛋白PCNA的表达[19]。另外,芦荟苷处理非小细胞肺癌细胞后,凋亡相关蛋白Caspase-3、Caspase-8和Caspase-9表达上升,侵袭相关蛋白VEGF、MMP-9和MMP-14表达下降[15]。本研究结果显示,芦荟苷可减弱食管癌KYSE70细胞增殖相关蛋白PCNA和侵袭相关蛋白MMP-9表达,增强凋亡相关蛋白caspase-3的表达。

    本研究中,低浓度(10和20 μmol/L)的芦荟苷对食管癌KYSE70细胞的生存活力无影响,中高浓度(40、80和120 μmol/L)的芦荟苷则可以抑制食管癌KYSE70细胞活力。40和80 μmol/L的芦荟苷作用于食管癌KYSE70细胞72 h后,细胞增殖能力明显减弱。10、40和80 μmol/L的芦荟苷还可以促进食管癌KYSE70细胞凋亡,抑制细胞侵袭。

    综上所述,体外研究表明芦荟苷可以抑制食管癌KYSE70细胞的增殖和侵袭,促进细胞凋亡。本研究仅在细胞层面进行了探索,为了更加深入研究芦荟苷在食管癌治疗中的作用,下一步,我们计划建立KYSE70荷瘤小鼠模型,探索芦荟苷在体内对食管癌细胞增殖和迁移的影响及相应的信号通路,为新一代的食管癌抗癌药物的开发提供理论依据。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    张丽佳:论文构思、撰写及修改
    刘佳芮、张沅、陈薪宇:参与文献收集及整理
    王信:指导论文修改
    张怡:写作指导及审阅
  • [1]

    Derakhshan F, Reis-Filho JS. Pathogenesis of Triple-Negative Breast Cancer[J]. Annu Rev Pathol, 2022, 17: 181-204. doi: 10.1146/annurev-pathol-042420-093238

    [2]

    Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer[J]. Clin Cancer Res, 2015, 21(7): 1688-1698. doi: 10.1158/1078-0432.CCR-14-0432

    [3]

    Liu YR, Jiang YZ, Xu XE, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer[J]. Breast Cancer Res, 2016, 18(1): 33. doi: 10.1186/s13058-016-0690-8

    [4]

    John EM, Hines LM, Phipps AI, et al. Reproductive history, breast-feeding and risk of triple negative breast cancer: The Breast Cancer Etiology in Minorities (BEM) study[J]. Int J Cancer, 2018, 142(11): 2273-2285. doi: 10.1002/ijc.31258

    [5]

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708

    [6]

    Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence[J]. Front Mol Biosci, 2022, 9: 836417. doi: 10.3389/fmolb.2022.836417

    [7]

    Lin CH, Yap YS, Lee KH, et al. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population[J]. J Natl Cancer Inst, 2019, 111(12): 1298-1306. doi: 10.1093/jnci/djz090

    [8]

    McCarthy AM, Friebel-Klingner T, Ehsan S, et al. Relationship of established risk factors with breast cancer subtypes[J]. Cancer Med, 2021, 10(18): 6456-6467. doi: 10.1002/cam4.4158

    [9]

    Plasilova ML, Hayse B, Killelea BK, et al. Features of triple-negative breast cancer: Analysis of 38, 813 cases from the national cancer database[J]. Medicine (Baltimore), 2016, 95(35): e4614. doi: 10.1097/MD.0000000000004614

    [10] 陈薪宇, 张怡, 王信, 等. 结核病流行现况及遗传易感性研究进展[J]. 重庆医科大学学报, 2022, 47(12): 1441-1446. doi: 10.13406/j.cnki.cyxb.002941

    Chen XY, Zhang Y, Wang X, et al. Research progress on tuberculosis epidemic status and genetic susceptibility[J]. Chongqing Yi Ke Da Xue Xue Bao, 2022, 47(12): 1441-1446. doi: 10.13406/j.cnki.cyxb.002941

    [11]

    Lehmann BD, Jovanović B, Chen X, et al Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection[J]. PLoS One, 2016, 11(6): e0157368. doi: 10.1371/journal.pone.0157368

    [12]

    Bareche Y, Buisseret L, Gruosso T, et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach[J]. J Natl Cancer Inst, 2020, 112(7): 708-719. doi: 10.1093/jnci/djz208

    [13]

    Lee KM, Lin CC, Servetto A, et al. Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer[J]. Cancer Immunol Res, 2022, 10(7): 829-843. doi: 10.1158/2326-6066.CIR-21-0826

    [14]

    Lopes LF, Guembarovski RL, Guembarovski AL, et al. FOXP3 transcription factor: a candidate marker for susceptibility and prognosis in triple negative breast cancer[J]. Biomed Res Int, 2014, 2014: 341654.

    [15]

    Chen Y, Qi X, Bian C, et al. The association of FOXP3 gene polymorphisms with cancer susceptibility: a comprehensive systemic review and meta-analysis[J]. Biosci Rep, 2019, 39(3): BSR20181809. doi: 10.1042/BSR20181809

    [16]

    Shan J, Chouchane A, Mokrab Y, et al. Genetic Variation in CCL5 Signaling Genes and Triple Negative Breast Cancer: Susceptibility and Prognosis Implications[J]. Front Oncol, 2019, 9: 1328. doi: 10.3389/fonc.2019.01328

    [17]

    Guembarovski AL, Guembarovski RL, Hirata BKB, et al. CXCL12 chemokine and CXCR4 receptor: association with susceptibility and prognostic markers in triple negative breast cancer[J]. Mol Biol Rep, 2018, 45(5): 741-750. doi: 10.1007/s11033-018-4215-7

    [18]

    Newman LA, Jenkins B, Chen Y, et al. Hereditary Susceptibility for Triple Negative Breast Cancer Associated With Western Sub-Saharan African Ancestry: Results From an International Surgical Breast Cancer Collaborative[J]. Ann Surg, 2019, 270(3): 484-492. doi: 10.1097/SLA.0000000000003459

    [19]

    Zhang J, Wang L, Xu X, et al. Transcriptome-Based Network Analysis Unveils Eight Immune-Related Genes as Molecular Signatures in the Immunomodulatory Subtype of Triple-Negative Breast Cancer[J]. Front Oncol, 2020, 10: 1787. doi: 10.3389/fonc.2020.01787

    [20]

    Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features[J]. J Zhejiang Univ Sci B, 2022, 23(8): 617-624. doi: 10.1631/jzus.B2200113

    [21]

    You CP, Leung MH, Tsang WC, et al. Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer[J]. Biomolecules, 2022, 12(1): 72. doi: 10.3390/biom12010072

    [22]

    Xie WY, He RH, Zhang J, et al. β-blockers inhibit the viability of breast cancer cells by regulating the ERK/COX-2 signaling pathway and the drug response is affected by ADRB2 single-nucleotide polymorphisms[J]. Oncol Rep, 2019, 41(1): 341-350.

    [23]

    Jiang YZ, Ma D, Suo C, et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5. doi: 10.1016/j.ccell.2019.02.001

    [24]

    Aravind Kumar M, Singh V, Naushad SM, et al. Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population[J]. Mol Cell Biochem, 2018, 442(1-2): 1-10. doi: 10.1007/s11010-017-3187-6

    [25]

    Aine M, Boyaci C, Hartman J, et al. Correction to: Molecular analyses of triple-negative breast cancer in the young and elderly[J]. Breast Cancer Res, 2021, 23(1): 28. doi: 10.1186/s13058-021-01405-y

    [26]

    Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406. doi: 10.1007/s10549-018-4697-y

    [27]

    Zhang Z, Chen Q, Zhang J, et al. Associations of genetic polymorphisms in pTEN/AKT/Mtor signaling pathway genes with cancer risk: A meta-analysis in Asian population[J]. Sci Rep, 2017, 7(1): 17844. doi: 10.1038/s41598-017-17250-z

    [28]

    Pop LA, Cojocneanu-Petric RM, Pileczki V, et al. Genetic alterations in sporadic triple negative breast cancer[J]. Breast, 2018, 38: 30-38. doi: 10.1016/j.breast.2017.11.006

    [29]

    Purrington KS, Slager S, Eccles D, et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer[J]. Carcinogenesis, 2014, 35(5): 1012-1019. doi: 10.1093/carcin/bgt404

    [30]

    Son BH, Kim MK, Yun YM, et al. Genetic polymorphism of ESR1 rs2881766 increases breast cancer risk in Korean women[J]. J Cancer Res Clin Oncol, 2015, 141(4): 633-645. doi: 10.1007/s00432-014-1849-2

    [31]

    Stevens KN, Vachon CM, Lee AM, et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer[J]. Cancer Res, 2011, 71(19): 6240-6249. doi: 10.1158/0008-5472.CAN-11-1266

    [32]

    Ellsworth DL, Turner CE, Ellsworth RE. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and theRole of Nontraditional Genetic Elements[J]. J Oncol, 2019, 2019: 4382606.

    [33]

    Zhao S, Ma D, Xiao Y, et al. Molecular Subtyping of Triple-Negative Breast Cancers by Immunohistochemistry: Molecular Basis and Clinical Relevance[J]. Oncologist, 2020, 25(10): 1481-1491. doi: 10.1634/theoncologist.2019-0982

    [34]

    Sonnenblick A, Brohée S, Fumagalli D, et al. Constitutive phosphorylated STAT3-associated gene signature is predictive for trastuzumab resistance in primary HER2-positive breast cancer[J]. BMC Med, 2015, 13: 177. doi: 10.1186/s12916-015-0416-2

    [35]

    Marotta LL, Almendro V, Marusyk A, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors[J]. J Clin Invest, 2011, 121(7): 2723-2735. doi: 10.1172/JCI44745

    [36]

    Bharadwaj U, Kasembeli MM, Robinson P, et al. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution[J]. Pharmacol Rev, 2020, 72(2): 486-526. doi: 10.1124/pr.119.018440

    [37]

    Kim J, Jang G, Sim SH, et al. SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer[J]. Cancers (Basel), 2021, 13(21): 5474. doi: 10.3390/cancers13215474

    [38]

    Mussunoor S, Murray GI. The role of annexins in tumour development and progression[J]. J Pathol, 2008, 216(2): 131-140. doi: 10.1002/path.2400

    [39]

    Aravind Kumar M, Naushad SM, Narasimgu N, et al. Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage[J]. Mol Biol Rep, 2018, 45(5): 1413-1419. doi: 10.1007/s11033-018-4307-4

    [40]

    Algebaly AS, Suliman RS, Al-Qahtani WS. Comprehensive study for BRCA1 and BRCA2 entire coding regions in breast cancer[J]. Clin Transl Oncol, 2021, 23(1): 74-81. doi: 10.1007/s12094-020-02385-9

    [41]

    Staaf J, Glodzik D, Bosch A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10): 1526-1533. doi: 10.1038/s41591-019-0582-4

    [42]

    Zhang H, Ahearn TU, Lecarpentier J, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses[J]. Nat Genet, 2020, 52(6): 572-581. doi: 10.1038/s41588-020-0609-2

    [43]

    Wu J, Mamidi TKK, Zhang L, et al. Integrating Germline and Somatic Mutation Information for the Discovery of Biomarkers in Triple-Negative Breast Cancer[J]. Int J Environ Res Public Health, 2019, 16(6): 1055. doi: 10.3390/ijerph16061055

    [44]

    Yang XR, Devi BCR, Sung H, et al. Prevalence and spectrum of germline rare variants in BRCA1/2 and PALB2 among breast cancer cases in Sarawak, Malaysia[J]. Breast Cancer Res Treat, 2017, 165(3): 687-697. doi: 10.1007/s10549-017-4356-8

    [45]

    Ling H, Li S, Wu Y, et al. Genetic evaluation of BRCA1 associated a complex genes with triple-negative breast cancer susceptibility in Chinese women[J]. Oncotarget, 2016, 7(9): 9759-9772. doi: 10.18632/oncotarget.7112

    [46]

    Su CH, Chang WS, Hu PS, et al. Contribution of DNA Double-strand Break Repair Gene XRCC3 Genotypes to Triple-negative Breast Cancer Risk[J]. Cancer Genomics Proteomics, 2015, 12(6): 359-367.

    [47]

    Michalska MM, Samulak D, Romanowicz H, et al. Single Nucleotide Polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T Homologous Recombination Repair Genes and the Risk of Triple- Negative Breast Cancer in Polish Women[J]. Pathol Oncol Res, 2015, 21(4): 935-940. doi: 10.1007/s12253-015-9922-y

    [48]

    Rackham OJ, Madera M, Armstrong CT, et al. The evolution and structure prediction of coiled coils across all genomes[J]. J Mol Biol, 2010, 403(3): 480-493. doi: 10.1016/j.jmb.2010.08.032

    [49]

    Verma N, Müller AK, Kothari C, et al. Correction: Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4-NDRG1 Axis[J]. Cancer Res, 2020, 80(2): 362. doi: 10.1158/0008-5472.CAN-19-3573

    [50]

    Shin SY, Müller AK, Verma N, et al. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer[J]. PLoS Comput Biol, 2018, 14(6): e1006192. doi: 10.1371/journal.pcbi.1006192

    [51]

    Han MR, Deming-Halverson S, Cai Q, et al. Evaluating 17 breast cancer susceptibility loci in the Nashville breast health study[J]. Breast Cancer, 2015, 22(5): 544-551. doi: 10.1007/s12282-014-0518-2

    [52]

    Wozniak K, Krupa R, Synowiec E, et al. Polymorphism of UBC9 gene encoding the SUMO-E2-conjugating enzyme and breast cancer risk[J]. Pathol Oncol Res, 2014, 20(1): 67-72. doi: 10.1007/s12253-013-9659-4

    [53]

    Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation[J]. Immunity, 2019, 50(4): 871-891. doi: 10.1016/j.immuni.2019.03.020

    [54]

    Chen KY, Chien WC, Liao JM, et al. Contribution of Interleukin-10 Genotype to Triple Negative Breast Cancer Risk[J]. Anticancer Res, 2021, 41(5): 2451-2457. doi: 10.21873/anticanres.15020

    [55]

    Vitiello GAF, Losi Guembarovski R, Amarante MK, et al. Interleukin 7 receptor alpha Thr244Ile genetic polymorphism is associated with susceptibility and prognostic markers in breast cancer subgroups[J]. Cytokine, 2018, 103: 121-126. doi: 10.1016/j.cyto.2017.09.019

计量
  • 文章访问数:  1388
  • HTML全文浏览量:  3378
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 修回日期:  2023-01-26
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回
x 关闭 永久关闭