-
摘要:
肝癌是一种严重威胁人类生命健康的常见肿瘤,由于肝癌早期起病隐匿,缺乏特异症状,且常规检查难以筛查出早期肝癌,临床上肝癌的诊断多处于晚期。晚期肝癌可选择的治疗手段少、预后差、复发率高,导致肝癌病死率高,因此早期诊断尤为重要。目前广泛应用于临床的肝癌无创筛查缺少足够的灵敏度及特异度,迫切需要寻找更可靠的诊断方法。本文就肝癌无创早期诊断的研究进展进行综述,为提高肝癌早期诊断率提供参考。
Abstract:Liver cancer is a common tumor that seriously threatens human life and health. Given that the early onset of liver cancer is insidious and lacks specific symptoms, hence it is difficult to screen through routine examination. Thus, clinical diagnosis of liver cancer is mostly in the advanced stage. However, advanced liver cancer has few treatment options, poor prognosis and high relapse rate, thereby causing a high mortality rate. Therefore, early diagnosis of liver cancer is particularly important. Currently, non-invasive screening of liver cancer widely used in clinical setups lacks sufficient sensitivity and specificity, hence, a more reliable diagnostic method needs to be found urgently. This article reviews the research progress of noninvasive early diagnosis of liver cancer to provide a reference for raising the early diagnosis rate of liver cancer.
-
Key words:
- Liver cancer /
- Early diagnosis /
- Noninvasive diagnosis /
- Biomarkers /
- Imaging techniques
-
0 引言
鼻咽癌是最常见的头颈部肿瘤之一。我国为鼻咽癌高发地区,每年的发病率约为20/10万[1],由于鼻咽解剖结构及生物学行为的特殊性,很难行手术治疗,目前鼻咽癌公认和有效的治疗手段为放射治疗或以放疗为主的综合治疗。虽然放疗技术不断进步与放疗设备的不断更新,鼻咽癌的生存率有了较大的提高,但5年生存率仍为60%~80%[2],部分患者仍未能获得长期生存。TNM分期系统是鼻咽癌预后判断和指导治疗的重要依据,但临床发现同一分期患者即使接受相同的治疗方案,预后却不同[3-4],这提示鼻咽癌生物学差异的存在,仅基于解剖学信息的TNM临床分期系统还不能准确地预测鼻咽癌患者的预后。虽然EB病毒滴度、表皮生长因子受体、microRNA也可提示鼻咽癌的预后[5-7],但检测成本高,需要多中心合作,临床上可行性差。所以,亟需检测方便、价格低廉可预测鼻咽癌预后的标志物。
流行病学研究证实,约25%的肿瘤由炎性反应发展而来,其与肿瘤的发生发展密切相关并且影响肿瘤患者的预后[8]。炎性反应指标,如白细胞计数[9]、血小板计数[10-11]、中性粒淋巴细胞比(neutrophil-lymphocyte ratio, NLR)[12-13]、血小板淋巴细胞比(platelet-lymphocyte ratio, PLR)[14-15]被发现可作为肿瘤的独立预后因素。这些血液指标检测方便,价格低廉,可广泛应用于临床,评估患者预后。本研究通过对91例鼻咽癌患者临床资料进行回顾性分析,评价治疗前PLR和NLR与鼻咽癌患者预后的相关性,为评估预后提供客观依据。
1 资料与方法
1.1 临床资料
回顾性收集2009年1月至2013年9月期间于西安交通大学第一附属医院和陕西省人民医院初治的91例鼻咽癌患者,所有病例均经病理证实。临床资料完整。排除标准:(1)合并有免疫性疾病以及其他恶性肿瘤的患者;(2)治疗前合并有急性或慢性感染;(3)合并有血液系统疾病、血栓或出血性疾病;(4)合并有严重的肝、肾疾病;(5)治疗前曾接受过放疗或化疗;(6)无远处转移。记录患者治疗前的中性粒细胞计数、淋巴细胞计数及血小板计数结果。
1.2 治疗及随访方法
入选患者采用3D-CRT或IMRT根治性放疗(有或无化疗),Ⅰ期患者仅接受单纯放射治疗,Ⅱ、Ⅲ、Ⅳ期患者接受以顺铂和5-氟尿嘧啶为主的辅助或同步放化疗。鼻咽原发灶和颈部转移淋巴结剂量为(70~76)Gy/(7~8)w/(35~38)f,颈部预防区域剂量为(50~60)Gy/(5~6)w/(25~30)f。根据患者的临床分期及不良反应给予2~6周期的全身化疗,化疗方案为:顺铂25 mg/m2,第1~3天静脉滴注;5-氟尿嘧啶500 mg/m2,第1~5天静脉滴注,每21天重复1周期。患者治疗结束后均定期随访,治疗后前2年,每3月检查一次,2年后半年复查一次,5年后1年复查1次。随访截止时间为2016年9月。
1.3 统计学方法
采用SPSS19.0软件对数据进行统计学分析。绘制ROC曲线确定PLR和NLR与总生存期(overall survival, OS)及无进展生存期(progression-free survival, PFS)的相关性,选取截断值。应用Kaplan-Meier法进行生存分析并采用Log rank检验来检验。采用Cox比例风险回归模型分析多种因素对生存时间的影响。以P < 0.05为差异有统计学意义。
2 结果
2.1 鼻咽癌患者临床病理资料
91例患者的基本特征资料见表 1,中位年龄53岁(12~72)岁,女30例,男61例,男女比例2:1,Ⅰ、Ⅱ、Ⅲ、Ⅳ期患者分别为2、27、42、20例。单纯放疗患者9例,82例患者接受辅助或同步放化疗,所有患者均按期完成放化疗。中位随访时间为44月(6~87)月,其中44例出现复发或转移,39例患者死亡。患者的1、3、5年总生存率分别为92.3%、72.1%、56.8%,1、3、5年无进展生存率分别为82.4%、60.9%、53.3%。
表 1 91例鼻咽癌患者临床基本特征资料(n(%))Table 1 Basic clinical features of 91 nasopharyngeal carcinoma patients (n(%))2.2 ROC曲线选取PLR和NLR预后相关截断值
以OS作为终点,PLR、NLR为检测变量,绘制ROC曲线选取截断值分别为143.3、2.6,两者的曲线下面积分别为0.640、0.739,见图 1。
以PFS作为终点,PLR、NLR为检测变量,绘制ROC曲线选取截断值分别为143.3、2.6,两者的曲线下面积分别为0.657、0.694,见图 2。说明治疗前PLR、NLR与患者的预后存在相关性,利用ROC曲线选取的截断值进行进一步生存分析。
2.3 Kaplan-Meier生存分析、Cox单因素和多因素分析
PLR≥143.3组和PLR < 143.3组患者生存曲线比较,差异有统计学意义(P=0.022),见图 3~4。NLR≥2.6组和NLR < 2.6组患者生存曲线比较,差异有统计学意义(P=0.044),见图 5~6。
Cox单因素分析显示除性别、年龄以外,TNM分期、治疗前PLR≥143.3、NLR≥2.6均是影响鼻咽癌患者OS和PFS的不良预后因素(P < 0.05),见表 2。Cox多因素分析显示治疗前PLR≥143.3(RR=2.491, 95%CI=1.139~5.451, P=0.022)、NLR≥2.6(RR=2.186, 95%CI=1.021~4.682,P=0.044)是鼻咽癌患者OS的独立危险因素,而治疗前PLR≥143.3(RR=2.461,95%CI=1.242~4.874, P=0.010)是鼻咽癌患者PFS的独立危险因素,见表 3。
表 2 影响鼻咽癌患者生存预后的Cox单因素分析Table 2 Cox univariate analysis of prognostic factors for nasopharyngeal carcinoma patients表 3 影响鼻咽癌患者生存预后的Cox多因素分析Table 3 Cox multivariate analysis of prognostic factors for nasopharyngeal carcinoma patients3 讨论
鼻咽癌对放射线高度敏感,因此放疗成为主要治疗手段。随着三维适形放疗和调强放射治疗的临床应用,鼻咽癌的生存率较前明显提高,但5年生存率仍仅为60%~80%。多项研究表明鼻咽癌患者预后与众多因素有关,包括患者年龄、临床分期、EB病毒感染及贫血等。此外,肿瘤的预后还与机体本身的炎性反应有关。炎性反应包含中性粒细胞、淋巴细胞、血小板、C反应蛋白等多种指标,其中PLR、NLR已受到越来越多专家的关注。本研究发现治疗前PLR和NLR可能成为鼻咽癌的独立预后因素。
恶性肿瘤患者常伴随血小板的升高,实验研究表明血小板参与肿瘤细胞生长、转移及血管生成[16]。临床研究表明血小板数目升高与肿瘤患者较差预后相关[11, 17]。此外研究表明中性粒细胞可促使机体产生多种促肿瘤生长因子和蛋白酶,促进肿瘤的发生、发展[18]。而淋巴细胞参与机体的免疫反应是抗肿瘤免疫的重要组成部分,淋巴细胞减少说明机体免疫机制异常,抗肿瘤免疫力下降,为肿瘤生长、浸润和转移提供条件。随着肿瘤进展,机体内炎性反应与肿瘤失去平衡,体内淋巴细胞降低,而血小板、中性粒细胞升高,相应的PLR和NLR比值也增高,机体内促进肿瘤炎性反应与抗肿瘤炎性反应的平衡状态被打破。因此PLR和NLR是反应机体免疫情况的重要指标,两者的升高能促进肿瘤进展,导致肿瘤患者预后不良。既往研究结果显示高PLR和NLR可影响宫颈癌、乳腺癌、结直肠癌等恶性肿瘤的预后[19-21]。而目前关于PLR、NLR与鼻咽癌患者预后相关性的研究较少,Sun等[21]分析了251例鼻咽癌患者治疗前PLR和NLR,结果证明治疗前两者水平是影响鼻咽癌患者生存独立预后因素。本研究结果显示治疗前PLR、NLR与鼻咽癌患者的总生存期和无进展生存期具有相关性。Cox多因素分析提示PLR≥143.3、NLR≥2.6和TNM分期是影响鼻咽癌患者治疗后的独立危险因素。PLR≥143.3组患者有较短OS和PFS,而NLR≥2.6组患者有较差的OS,和本研究结果相一致。因此,高PLR、NLR的鼻咽癌患者总生存率要低于低PLR、NLR的患者,且高PLR的患者复发或转移风险明显增加。据此,临床上或许可以通过提高鼻咽癌患者免疫功能及降低机体炎性反应,改善患者的预后。
但由于本研究是一个相对小样本的回顾性研究,不能代表大部分的鼻咽癌患者,且随访时间较短,存在一定的局限性,因此需要进行多中心、大样本的前瞻性研究来进一步证实。
本研究结果表明,治疗前PLR和NLR水平与鼻咽癌患者预后具有相关性,可能是影响鼻咽癌患者预后的独立危险因素,NLR和PLR的获取具有简便、经济的优点,可以作为鼻咽癌患者病情评估的一个有益补充,值得推广。目前鼻咽癌相关有效预后指标较多,笔者将在今后的临床研究工作中继续探索,将本研究指标与已有的有效预后指标进行比较,从而提高治疗前PLR和NLR水平这一预后指标应用于临床的合理性及可靠性。
Competing interests: The authors declare that they have no competing interests.作者贡献:卢慧:文章构思及文献检索、文章撰写谢正元:文章修改及审校 -
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZD202102001.htm Liu ZC, Li ZX, Zhang Y, et al. Interpretation on the report of global cancer statistics 2020[J]. Zhong Liu Zong He Zhi Liao Dian Zi Za Zhi, 2021, 7(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZD202102001.htm
[3] Tsuchiya N, Sawada Y, Endo I, et al. Biomarkers for the early diagnosis of hepatocellular carcinoma[J]. World J Gastroenterol, 2015, 21(37): 10573-10583. doi: 10.3748/wjg.v21.i37.10573
[4] 曹毛毛, 李贺, 孙殿钦, 等. 全球肝癌2020年流行病学现状[J]. 中华肿瘤防治杂志, 2022, 29(5): 322-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202205003.htm Cao MM, Li H, Sun DQ, et al. Global epidemiology of liver cancer in 2020[J]. Zhonghua Zhong Liu Fang Zhi Za Zhi, 2022, 29(5): 322-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202205003.htm
[5] Song P, Gao J, Inagaki Y, et al. Biomarkers: evaluation of screening for and early diagnosis of hepatocellular carcinoma in Japan and China[J]. Liver Cancer, 2013, 2(1): 31-39. doi: 10.1159/000346220
[6] Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis[J]. World J Gastroenterology, 2018, 24(22): 2348-2362. doi: 10.3748/wjg.v24.i22.2348
[7] 陆荫英, 赵海涛, 程家敏, 等. 肝胆肿瘤分子诊断临床应用专家共识[J]. 肝癌电子杂志, 2020, 36(7): 1482-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-GADZ202001004.htm Lu YY, Zhao HT, Cheng JM, et al. Consensus for clinical application of molecular diagnosis on hepatobiliary carcinoma[J]. Gan Ai Dian Zi Za Zhi, 2020, 36(7): 1482-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-GADZ202001004.htm
[8] 高春芳, 房萌, 季君. 多学科甲胎蛋白异质体临床应用专家共识[J]. 诊断学理论与实践, 2018, 17(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS201801004.htm Gao CF, Fang M, Ji J. Expert consensus on the clinical application of multidisciplinary alpha fetoprotein heterogene[J]. Zhen Duan Xue Li Lun Yu Shi Jian, 2018, 17(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS201801004.htm
[9] Zhou JM, Wang T, Zhang KH. AFP-L3 for the diagnosis of early hepatocellular carcinoma: A meta-analysis[J]. Medicine (Baltimore), 2021, 100(43): e27673. doi: 10.1097/MD.0000000000027673
[10] 周何琪, 任志刚, 余祖江. 血清PIVKA-Ⅱ及AFP-L3(%)在AFP低水平肝癌中的诊断价值[J]. 河南医学研究, 2019, 28(14): 2521-2523. doi: 10.3969/j.issn.1004-437X.2019.14.007 Zhou HQ, Ren ZG, Yu ZJ. Clinical value of combined detection of serum PIVKA-Ⅱ and AFP-L3(%) in the diagnosis of primary carcinoma of liver with low concentration of AFP[J]. He'nan Yi Xue Yan Jiu, 2019, 28(14): 2521-2523. doi: 10.3969/j.issn.1004-437X.2019.14.007
[11] Yang Y, Li G, Lu Z, et al. Progression of Prothrombin Induced by Vitamin K Absence-Ⅱ in Hepatocellular Carcinoma[J]. Front Oncol, 2021, 11: 726213. doi: 10.3389/fonc.2021.726213
[12] Svobodova S, Karlikova M, Topolcan O, et al. PIVKA-Ⅱ as a Potential New Biomarker for Hepatocellular Carcinoma-A Pilot Study[J]. In Vivo, 2018, 32(6): 1551-1554. doi: 10.21873/invivo.11413
[13] Zhang SG, Huang Y. Usefulness of AFP, PIVKA-Ⅱ, and Their Combination in Diagnosing Hepatocellular Carcinoma Based on Upconversion Luminescence Immunochromatography[J]. Lab Med, 2022, 53(5): 488-494. doi: 10.1093/labmed/lmac027
[14] Best J, Bechmann LP, Sowa JP, et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 728-735.e4. doi: 10.1016/j.cgh.2019.11.012
[15] Schotten C, Ostertag B, Sowa JP, et al. GALAD Score Detects Early-Stage Hepatocellular Carcinoma in a European Cohort of Chronic Hepatitis B and C Patients[J]. Pharmaceuticals (Basel), 2021, 14(8): 735. doi: 10.3390/ph14080735
[16] Singal AG, Tayob N, Mehta A, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis[J]. Hepatology, 2022, 75(3): 541-549. doi: 10.1002/hep.32185
[17] Kolluri A, Ho M. The Role of Glypican-3 in Regulating Wnt, YAP, and Hedgehog in Liver Cancer[J]. Front Oncol, 2019, 9: 708. doi: 10.3389/fonc.2019.00708
[18] Xu D, Su C, Sun L, et al. Performance of Serum Glypican 3 in Diagnosis of Hepatocellular Carcinoma: A meta-analysis[J]. Ann Hepatol, 2019, 18(1): 58-67. doi: 10.5604/01.3001.0012.7863
[19] Zhou F, Shang W, Yu X, et al. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment[J]. Med Res Rev, 2018, 38(2): 741-767. doi: 10.1002/med.21455
[20] Xing H, Qiu H, Ding X, et al. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma[J]. Biomark Med, 2019, 13(7): 545-555. doi: 10.2217/bmm-2018-0414
[21] Liu D, Luo Y, Chen L, et al. Diagnostic value of 5 serum biomarkers for hepatocellular carcinoma with different epidemiological backgrounds: A large-scale, retrospective study[J]. Cancer Biol Med, 2021, 18(1): 256-270. doi: 10.20892/j.issn.2095-3941.2020.0207
[22] Ratnasari N, Lestari P, Renovaldi D, et al. Potential plasma biomarkers: miRNA-29c, miRNA-21, and miRNA-155 in clinical progression of Hepatocellular Carcinoma patients[J]. PLoS One, 2022, 17(2): e0263298. doi: 10.1371/journal.pone.0263298
[23] Wang Y, Zhang C, Zhang P, et al. Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma[J]. Cancer Med, 2018, 7(5): 1670-1679. doi: 10.1002/cam4.1390
[24] 吕金明, 李燕, 苏凤君. miRNA-122联合肿瘤标志物在慢性乙肝病毒感染肝硬化及早期肝癌诊断中的价值[J]. 中华医院感染学杂志, 2020, 30(19): 2922-2926. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY202019012.htm Lyu JM, Li Y, Su FJ. Diagnostic value of miRNA-122 combined with tumor markers in cirrhosis and early liver cancer of patients with chronic hepatitis B virus infection[J]. Zhonghua Yi Yuan Gan Ran Xue Za Zhi, 2020, 30(19): 2922-2926. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY202019012.htm
[25] Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Oncol, 2011, 29(36): 4781-4788. doi: 10.1200/JCO.2011.38.2697
[26] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2022年版)[J]. 肿瘤防治研究, 2022, 49(3): 251-276. doi: 10.3971/j.issn.1000-8578.2022.03.0001 National Health Commission of the People's Republic of China. Standard for diagnosis and treatment of primary Hepetic Carcinorma (2022 edition)[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(3): 251-276. doi: 10.3971/j.issn.1000-8578.2022.03.0001
[27] Fiala C, Kulasingam V, Diamandis EP. Circulating Tumor DNA for Early Cancer Detection[J]. J Appl Lab Med, 2018, 3(2): 300-313. doi: 10.1373/jalm.2018.026393
[28] Ye Q, Ling S, Zheng S, et al. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA[J]. Mol Cancer, 2019, 18(1): 114. doi: 10.1186/s12943-019-1043-x
[29] Yan L, Chen Y, Zhou J, et al. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma[J]. Int J Infect Dis, 2018, 67: 92-97. doi: 10.1016/j.ijid.2017.12.002
[30] Huang Z, Hua D, Hu Y, et al. Quantitation of plasma circulating DNA using quantitative PCR for the detection of hepatocellular carcinoma[J]. Pathol Oncol Res, 2012, 18(2): 271-276. doi: 10.1007/s12253-011-9438-z
[31] Yang YJ, Chen H, Huang P, et al. Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction[J]. Clin Invest Med, 2011, 34(4): E238. doi: 10.25011/cim.v34i4.15366
[32] Zhang C, Li J, Huang T, et al. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(49): 81255-81267. doi: 10.18632/oncotarget.13221
[33] Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J]. Nat Mater, 2017, 16(11): 1155-1161. doi: 10.1038/nmat4997
[34] Liao WJ, Yang HY, Xu HF, et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing[J]. Oncotarget, 2016, 7(26): 40481-40490. doi: 10.18632/oncotarget.9629
[35] Ng CKY, Di Costanzo GG, Terracciano LM, et al. Circulating Cell-Free DNA in Hepatocellular Carcinoma: Current Insights and Outlook[J]. Front Med (Lausanne), 2018, 5: 78.
[36] Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24. doi: 10.1016/j.clinbiochem.2018.07.003
[37] Abdel-Hafiz SM, Hamdy HEM, Khorshed FM, et al. Evaluation of Osteopontin as a Biomarker in Hepatocellular Carcinomas in Egyptian Patients with Chronic HCV Cirrhosis[J]. Asian Pac J Cancer Prev, 2018, 19(4): 1021-1027.
[38] Sun T, Tang Y, Sun D, et al. Osteopontin versus alpha-fetoprotein as a diagnostic marker for hepatocellular carcinoma: a meta-analysis[J]. Onco Targets Ther, 2018, 11: 8925-8935. doi: 10.2147/OTT.S186230
[39] 张洪川, 张玉玺, 段丛迪. 骨桥蛋白和Ezrin蛋白在原发性肝癌组织中的表达及其与临床特征和预后的相关性[J]. 肝脏, 2019, 24(5): 549-552. doi: 10.3969/j.issn.1008-1704.2019.05.023 Zhang HC, Zhang YX, Duan CD. Expression of osteoqiao protein and Ezrin protein in primary hepatocellular carcinoma tissue and their correlation with clinical characteristics and prognosis[J]. Gan Zang, 2019, 24(5): 549-552. doi: 10.3969/j.issn.1008-1704.2019.05.023
[40] Distefano JK, Davis B. Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma[J]. Cancers (Basel), 2019, 11(4): 486. doi: 10.3390/cancers11040486
[41] Ye X, Li C, Zu X, et al. A Large-Scale Multicenter Study Validates Aldo-Keto Reductase Family 1 Member B10 as a Prevalent Serum Marker for Detection of Hepatocellular Carcinoma[J]. Hepatology, 2019, 69(6): 2489-2501.
[42] Murata A, Genda T, Ichida T, et al. Pretreatment AKR1B10 expression predicts the risk of hepatocellular carcinoma development after hepatitis C virus eradication[J]. World J Gastroenterol, 2016, 22(33): 7569-7578. doi: 10.3748/wjg.v22.i33.7569
[43] Torzilli G, Minagawa M, Takayama T, et al. Accurate preoperative evaluation of liver mass lesions without fine-needle biopsy[J]. Hepatology, 1999, 30(4): 889-893. doi: 10.1002/hep.510300411
[44] Cruite I, Tang A, Sirlin CB. Imaging-based diagnostic systems for hepatocellular carcinoma[J]. AJR Am J Roentgenol, 2013, 201(1): 41-55. doi: 10.2214/AJR.13.10570
[45] Kim TH, Yoon JH, Lee JM. Emerging Role of Hepatobiliary Magnetic Resonance Contrast Media and Contrast-Enhanced Ultrasound for Noninvasive Diagnosis of Hepatocellular Carcinoma: Emphasis on Recent Updates in Major Guidelines[J]. Korean J Radiol, 2019, 20(6): 863-879. doi: 10.3348/kjr.2018.0450
[46] Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow[J]. Eur Radiol, 2010, 20(10): 2405-2413. doi: 10.1007/s00330-010-1812-9
[47] Zhou J, Sun H, Wang Z, et al. Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition)[J]. Liver Cancer, 2020, 9(6): 682-720. doi: 10.1159/000509424
[48] Aubé C, Oberti F, Lonjon J, et al. EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice[J]. Liver Int, 2017, 37(10): 1515-1525. doi: 10.1111/liv.13429
[49] Wilson SR, Lyshchik A, Piscaglia F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI[J]. Abdom Radiol (NY), 2018, 43(1): 127-142. doi: 10.1007/s00261-017-1250-0
[50] Makoyeva A, Kim TK, Jang H-J, et al. Use of CEUS LI-RADS for the Accurate Diagnosis of Nodules in Patients at Risk for Hepatocellular Carcinoma: A Validation Study[J]. Radiol Imaging Cancer, 2020, 2(2): e190014. doi: 10.1148/rycan.2020190014
[51] Schwabe RF, Greten TF. Gut microbiome in HCC-Mechanisms, diagnosis and therapy[J]. J Hepatol, 2020, 72(2): 230-238. doi: 10.1016/j.jhep.2019.08.016
[52] Xie G, Wang X, Huang F, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis[J]. Int J Cancer, 2016, 139(8): 1764-1775. doi: 10.1002/ijc.30219
[53] Li K, Liu J, Qin X. Research progress of gut microbiota in hepatocellular carcinoma[J]. J Clin Lab Anal, 2022, 36(7): e24512. https://www.researchgate.net/publication/361418719_Research_progress_of_gut_microbiota_in_hepatocellular_carcinoma/fulltext/62d5202466bd1654d66ee992/Research-progress-of-gut-microbiota-in-hepatocellular-carcinoma.pdf?_sg%5B0%5D=started_experiment_milestone&_rtd=e30%3D
[54] Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease[J]. Hepatology, 2019, 69(1): 107-120. doi: 10.1002/hep.30036
[55] Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6): 1014-1023. https://gut.bmj.com/content/gutjnl/early/2018/07/25/gutjnl-2017-315084.full.pdf
[56] 丁惠国, 屠红, 曲春枫, 等. 原发性肝癌的分层筛查与监测指南(2020版)[J]. 临床肝胆病杂志, 2021, 37(2): 286-295. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD202102013.htm Ding HG, Tu H, Qu CF, et al. Guidelines for stratified screening and surveillance of primary liver cancer (2020 edition)[J]. Lin Chuang Gan Dan Bing Za Zhi, 2021, 37(2): 286-295. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD202102013.htm
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: