高级搜索

食管鳞癌免疫检查点抑制剂疗效预测标志物的研究进展

陈容珊, 薛丽燕

陈容珊, 薛丽燕. 食管鳞癌免疫检查点抑制剂疗效预测标志物的研究进展[J]. 肿瘤防治研究, 2022, 49(12): 1302-1306. DOI: 10.3971/j.issn.1000-8578.2022.22.0450
引用本文: 陈容珊, 薛丽燕. 食管鳞癌免疫检查点抑制剂疗效预测标志物的研究进展[J]. 肿瘤防治研究, 2022, 49(12): 1302-1306. DOI: 10.3971/j.issn.1000-8578.2022.22.0450
CHEN Rongshan, XUE Liyan. Research Progress of Predictive Markers for Efficacy of Immune Checkpoint Inhibitors for Esophageal Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(12): 1302-1306. DOI: 10.3971/j.issn.1000-8578.2022.22.0450
Citation: CHEN Rongshan, XUE Liyan. Research Progress of Predictive Markers for Efficacy of Immune Checkpoint Inhibitors for Esophageal Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(12): 1302-1306. DOI: 10.3971/j.issn.1000-8578.2022.22.0450

食管鳞癌免疫检查点抑制剂疗效预测标志物的研究进展

基金项目: 

中国医学科学院医学与健康科技创新工程项目 2021-I2M-1-067

国家癌症中心/中国医学科学院肿瘤医院人才项目希望之星 

详细信息
    作者简介:

    陈容珊(1996-),女,硕士在读,主要从事食管癌病理研究

    通讯作者:

    薛丽燕(1976-),女,博士,主任医师,主要从事胸部和上消化道肿瘤病理研究,E-mail: xuely@cicams.ac.cn

  • 中图分类号: R735.1

Research Progress of Predictive Markers for Efficacy of Immune Checkpoint Inhibitors for Esophageal Squamous Cell Carcinoma

Funding: 

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-067

Hope Star of Talent Program of National Cancer Center/Cancer Hospital of Chinese Academy of Medical Sciences 

More Information
  • 摘要:

    食管鳞癌是全球食管癌的主要病理类型,确诊时通常已为晚期,致死率高且预后差。新辅助治疗后手术切除是食管鳞癌的主要治疗方法。随着免疫治疗的兴起,以免疫检查点抑制剂(ICIs)为主的免疫治疗能给食管鳞癌患者带来一定的生存获益。但食管鳞癌免疫治疗的有效率有限,寻找能够预测免疫治疗效果的生物标志物有助于筛选免疫治疗可能受益患者。本文结合当今免疫治疗及相关标志物的研究文献,对食管鳞癌ICIs治疗相关预测标志物的研究进展作一综述,希望能为食管鳞癌的精准治疗和预后判断提供帮助。

     

    Abstract:

    Esophageal squamous cell carcinoma (ESCC) is the main prevalent histological type of esophageal cancer worldwide, with a high mortality and poor prognosis due to advanced stage at diagnosis. Surgical resection after neoadjuvant therapy is the main treatment for ESCC. With the rise of immunotherapy, immunotherapy on ESCC has been shown to improve outcomes, especially the immune checkpoint inhibitors (ICIs). As the efficacy of immunotherapy for ESCC is limited, it is helpful to screen patients who may benefit from immunotherapy by looking for predictive biomarkers of efficacy of immunotherapy. In this paper, based on the current literature on immunotherapy and related biomarkers, we review the research progress on predictive markers of ICIs for ESCC, in hopes of providing assistances for the precise treatment and prognosis determination.

     

  • 多发性骨髓瘤(multiple myeloma, MM)是浆细胞的恶性克隆增殖性疾病,表现为骨髓中大量恶性浆细胞的增殖和聚集,分泌单克隆的免疫球蛋白或其片段(M蛋白),导致贫血、肾功能不全、骨质破坏等一系列临床症状[1]。进入本世纪以来,由于自体干细胞移植的开展和靶向药物如蛋白酶体抑制剂(硼替佐米、伊沙佐米、卡非佐米)、免疫调节剂(沙利度胺、来那度胺、泊马度胺)和免疫治疗(单克隆抗体、CAR-T以及CAR-NK等)的应用,MM治疗的效果出现前所未有的改观,有效率升高,生存期延长[2-3]。然而总体而言MM仍然是一种不能被治愈的疾病,大多数患者最终难逃复发的厄运,并且随着复发次数增多,瘤细胞的耐药性增强,最终复发而不治[4]。为此,有必要对MM的发病机制和治疗策略进行回顾和梳理,以进一步改进其治疗方法,最终达到治愈MM的目标。

    MM主要生长在骨髓中的恶性肿瘤,复杂的骨髓瘤微环境中的细胞和非细胞组分对骨髓瘤细胞的生长与存活起到独特的维持作用,特别是骨髓微环境中的免疫细胞(包括T细胞、自然杀伤细胞、单核-巨噬细胞、树突状细胞、髓源抑制细胞等),不仅失去对恶性转化的骨髓瘤细胞的免疫监督和免疫杀伤作用,而且会在骨髓瘤细胞的影响下,发生功能失调,甚至促进和维系骨髓瘤生长和存活,诱导耐药的产生,导致疾病的反复复发[5-6]

    研究表明,在发展至活动期之前,MM都要经历意义未明的单克隆丙种球蛋白血症(monoclonal gammopathies of undetermined significance, MGUS)和冒烟型多发性骨髓瘤(smoldering MM, SMM)阶段[7-8]。尽管在MGUS和SMM中检测到的遗传损伤(如基因突变、染色体易位和拷贝数的改变等)与MM相似,但并非所有的MGUS和SMM都会发展为活动性MM。尤其是MGUS人群,每年只有大约1%发展为MM,大多数个体将终生保持这种意义未明的状态[9]。在MGUS向SMM和活动性MM的发展过程中,骨髓微环境中的免疫细胞的功能状态也会发生失调,如具有干性记忆性特征的T淋巴细胞耗尽以及具有衰老与耗竭特征的T淋巴细胞的积累,而且其程度随着病情进展而加重。耗竭T细胞的特点是效应功能丧失,抑制性受体表达增高,表观遗传和转录谱改变,代谢方式改变,难以有效发挥杀伤骨髓瘤细胞的效能。T细胞耗竭是患者免疫功能障碍的主要原因之一[10-12]。进一步研究显示,经过治疗达到完全缓解甚至是微小残留病阴性患者中,其骨髓中免疫细胞功能状态与患者的无进展生存密切相关。说明单凭克隆性浆细胞的内部因素(基因组的改变)不足以驱动MM的发生、发展。骨髓免疫微环境在MM的发生、发展中发挥着至关重要的作用[13]

    MM的发生、发展是一个多因素作用下的多步骤、复杂、动态的进化过程。具体而言,多克隆浆细胞在一些起始性的突变(如IgH易位、13q-、高二倍体等)驱动下,获得生长优势,成为单克隆的浆细胞。克隆性浆细胞为了获得更强的增殖和生存能力,一方面必须适应骨髓的微环境,发生新的遗传学和表观遗传学变化,使细胞内部增殖信号激活,凋亡信号受到抑制,并在营养竞争、免疫逃逸方面相对于正常细胞有显著的优势;另一方面瘤细胞要对骨髓微环境进行改造,使其有利于自身的生长[14-16]。瘤细胞和免疫细胞的相互作用及其生物学特性的改变都是动态变化的。骨髓瘤细胞可以表达许多能够与免疫细胞相互作用的分子,例如在骨髓瘤细胞基因组中检测到的激活诱导的胞苷脱氨酶(activation-induced cytidine deaminase, AID),其表达水平可以受到树突状细胞核因子κB受体活化因子配体(receptor activator of nuclear factor kappa-B ligand, RANKL)的调控,提示基因组的不稳定性与MM肿瘤微环境之间可以发生直接的相互作用[17]。此外,MGUS和MM细胞还可以表达钙连蛋白、钙网蛋白以及PD-L1分子,以抑制免疫细胞的功能[18]

    免疫系统对于早期肿瘤的免疫监督可以分为三个阶段,即消灭、平衡和逃逸,简称3E[19]。在Vk*MYC小鼠骨髓瘤模型中,T细胞和NK细胞可以通过CD226作用于肿瘤细胞,产生穿孔素和γ干扰素以杀伤骨髓瘤细胞,发挥免疫监督的功能[20]。也有学者报道对MM患者进行同基因造血干细胞移植时,加用免疫检查点分子TIGIT抗体可以防止CD8+T细胞的耗竭,延迟病情复发[21]。研究表明,不仅MM患者体内存在瘤细胞特异性的细胞毒性T淋巴细胞和特异性抗体,而且处于MGUS阶段的克隆性浆细胞可以被免疫细胞所识别并激活免疫细胞,这些个体体内可以检测到MGUS特异性的CD4+和CD8+淋巴细胞介导的免疫反应[22]。但随着MM的发展进程,干样记忆性T细胞的消耗并逐渐衰老与耗竭,这些免疫反应似乎不能完全遏制肿瘤的蔓延。MM患者的骨髓NK细胞激活型受体NKG2D、NCR3和CD244的表达降低,而PD-1表达增高,提示这些分子参与了MM的免疫逃逸,也可能是MM免疫治疗的潜在靶点[17]

    越来越多的证据表明,MM的发展进程取决于瘤细胞的进化及其生长的生态系统,其中免疫微环境所扮演的角色日益受到重视。治疗MM,不仅要瞄准骨髓瘤细胞本身,还应该关注骨髓瘤赖以生存的免疫微环境。在当下的靶向和免疫治疗时代,MM的治疗有效率不断提高,缓解深度越来越深,此时更应关注如何调动机体的免疫监督功能,使MM达到长期、持续的缓解,乃至治愈[23]

    近年来,不少新型治疗产品在MM的治疗领域取得令人瞩目的效果。这些新型产品往往在杀灭骨髓瘤细胞的同时,对免疫功能也有强大的调控作用。例如,抗CD38单克隆抗体不仅可以通过抗体依赖细胞介导的细胞毒作用(antibody-dependent cell-mediated cytotoxicity, ADCC)和补体依赖的细胞毒作用(complement-dependent cytotoxicity, CDC)杀伤骨髓瘤细胞,还可以中和CD38的胞外酶活性,减少免疫抑制介质腺苷的产生,同时对表达CD38的免疫抑制细胞也有清除作用[24]。抗CS-1单克隆抗体在杀灭骨髓瘤细胞的同时,还可以与NK细胞表面CS-1结合并激活NK细胞,使之发挥更强大的ADCC效应[25]。刚刚获批或正在研发CAR-T、CAR-NK和双特异性抗体(Bi-specific antibody, BiTEs)药物则是采用基因工程手段来重新激发免疫系统,达到消灭骨髓瘤细胞的目的[26]

    目前的免疫治疗仍然不能根治MM。在研发免疫治疗策略时,以下几点应该引起关注:首先,从理论上讲,实施免疫治疗应该是在疾病的早期开展,因为在疾病早期免疫系统功能处于相对正常状态,能够最大程度地发挥免疫监督功能。在此阶段,倘能通过应用疫苗阻止MGUS向MM的进展,将会达到事半功倍的效果[27];其次,应注意纠正免疫功能的失调。大量研究显示,MM微环境中的免疫细胞处于衰老、耗竭或失能状态,不能有效发挥杀伤骨髓瘤细胞的效能。为此,人们尝试应用靶向PD-1/PD-L1以及其他的免疫检查点如LAG3、TIGIT的抑制剂MM治疗,然而相关临床试验的结果并不理想[28]。提示我们需要寻找新的靶点或探索新的治疗策略,如将免疫检查点抑制剂与其他抗骨髓瘤治疗药物进行联合运用;第三,在接受免疫治疗的机体内,残存的肿瘤细胞也会不断进化,导致对免疫治疗产生耐受。例如,接受抗CD38单抗治疗后复发的患者体内骨髓瘤细胞CD38的表达会明显下调[29]。接受BCMA-CAR-T细胞治疗后复发的患者其瘤细胞BCMA的表达也会显著减少[30]。为此,可在深入研究骨髓瘤细胞靶抗原表达调控的基础之上,采用一些小分子化合物使MM丢失的抗原重新表达,逆转其对免疫治疗的耐受性或恢复其敏感度;最后,深入开展骨髓瘤细胞与免疫微环境相互作用的基础研究。骨髓瘤细胞克隆内的异质性导致其抑制免疫细胞的机制可能有所不同,对免疫细胞功能的影响也会有差异[31-32]。当前各种组学技术在阐明骨髓瘤细胞与免疫细胞的相互作用机制方面有着独特的优势。只有充分阐明免疫微环境的生物学特性,才能有针对性地纠正免疫功能异常,使MM获得长期、持续的缓解乃至治愈。

    多发性骨髓瘤治疗研究发展至今已经取得不少里程碑式的进展,但仍未能实现治愈性目标。患者反复复发的根本原因在于肿瘤细胞与微环境之间发生动态相互作用,使机体免疫系统失去了对肿瘤识别和杀伤的能力。目前,骨髓瘤治疗的焦点已不仅仅局限于针对肿瘤细胞本身,更多的研究聚焦于重塑个体的抗肿瘤免疫,达到免疫正常化。

    道阻且长,行将终至。相信随着人们对MM及其免疫微环境相互作用研究的不断深入,MM免疫治疗效果一定会有进一步提升,治愈MM的目标终将能够实现。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    陈容珊:论文撰写与修改
    薛丽燕:论文审校
  • [1]

    Cao Y, Qin S, Luo S, et al. Pembrolizumab versus chemotherapy for patients with esophageal squamous cell carcinoma enrolled in the randomized KEYNOTE-181 trial in Asia[J]. ESMO Open, 2022, 7(1): 100341. doi: 10.1016/j.esmoop.2021.100341

    [2]

    Huang J, Xu J, Chen Y, et al. Camrelizumab versus investigator's choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study[J]. Lancet Oncol, 2020, 21(6): 832-842. doi: 10.1016/S1470-2045(20)30110-8

    [3]

    Sun JM, Shen L, Shah MA, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study[J]. Lancet, 2021, 398(10302): 759-771. doi: 10.1016/S0140-6736(21)01234-4

    [4]

    Yang H, Wang K, Wang T, et al. The Combination Options and Predictive Biomarkers of PD-1/PD-L1 Inhibitors in Esophageal Cancer[J]. Front Oncol, 2020, 10: 300. doi: 10.3389/fonc.2020.00300

    [5]

    Quigley DA, Kristensen V. Predicting prognosis and therapeutic response from interactions between lymphocytes and tumor cells[J]. Mol Oncol, 2015, 9(10): 2054-2062. doi: 10.1016/j.molonc.2015.10.003

    [6]

    Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218. doi: 10.1038/s41573-018-0007-y

    [7]

    Teng MW, Ngiow SF, Ribas A, et al. Classifying Cancers Based on T-cell Infiltration and PD-L1[J]. Cancer Res, 2015, 75(11): 2139-2145. doi: 10.1158/0008-5472.CAN-15-0255

    [8]

    Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791): 549-555. doi: 10.1038/s41586-019-1922-8

    [9]

    Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020, 577(7791): 561-565. doi: 10.1038/s41586-019-1914-8

    [10]

    Ueno H, Kanemitsu Y, Sekine S, et al. A Multicenter Study of the Prognostic Value of Desmoplastic Reaction Categorization in Stage Ⅱ Colorectal Cancer[J]. Am J Surg Pathol, 2019, 43(8): 1015-1022. doi: 10.1097/PAS.0000000000001272

    [11]

    Kemi NA, Eskuri M, Pohjanen VM, et al. Histological assessment of stromal maturity as a prognostic factor in surgically treated gastric adenocarcinoma[J]. Histopathology, 2019, 75(6): 882-889. doi: 10.1111/his.13934

    [12] 李志文, 郑重, 张前, 等. 食管鳞状细胞癌肿瘤间质成熟度的临床病理学意义及与PD-L1表达的相关性[J]. 临床与实验病理学杂志, 2021, 37(8): 933-938. doi: 10.13315/j.cnki.cjcep.2021.08.008

    Li ZW, Zheng Z, Zhang Q, et al. Clinicopathological significance of tumor stromal maturity and relationship with PD-L1 expression in esophageal squamous cell cancer[J]. Lin Chuang Yu Shi Yan Bing Li Xue Za Zhi, 2021, 37(8): 933-938. doi: 10.13315/j.cnki.cjcep.2021.08.008

    [13]

    Obradovic A, Graves D, Korrer M, et al. Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer[J]. Clin Cancer Res, 2022, 28(10): 2094-2109. doi: 10.1158/1078-0432.CCR-21-3570

    [14]

    Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade[J]. J Clin Invest, 2017, 127(8): 2930-2940. doi: 10.1172/JCI91190

    [15]

    Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[J]. Science, 2018, 362(6411): eaar3593. doi: 10.1126/science.aar3593

    [16]

    Fukuchi M, Sakurai S, Suzuki M, et al. Esophageal squamous cell carcinoma with marked eosinophil infiltration[J]. Case Rep Gastroenterol, 2011, 5(3): 648-653. doi: 10.1159/000332441

    [17]

    Grisaru-Tal S, Itan M, Klion AD, et al. A new dawn for eosinophils in the tumour microenvironment[J]. Nat Rev Cancer, 2020, 20(10): 594-607. doi: 10.1038/s41568-020-0283-9

    [18]

    Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. doi: 10.1056/NEJMoa1500596

    [19]

    Chang L, Chang M, Chang HM, et al. Microsatellite Instability: A Predictive Biomarker for Cancer Immunotherapy[J]. Appl Immunohistochem Mol Morphol, 2018, 26(2): e15-e21. doi: 10.1097/PAI.0000000000000575

    [20]

    Hewitt LC, Inam IZ, Saito Y, et al. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: A large multi-centre study[J]. Eur J Cancer, 2018, 94: 104-114. doi: 10.1016/j.ejca.2018.02.014

    [21]

    Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413. doi: 10.1126/science.aan6733

    [22]

    Lemery S, Keegan P, Pazdur R. First FDA Approval Agnostic of Cancer Site - When a Biomarker Defines the Indication[J]. N Engl J Med, 2017, 377(15): 1409-1412. doi: 10.1056/NEJMp1709968

    [23]

    Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21(10): 1353-1365. doi: 10.1016/S1470-2045(20)30445-9

    [24]

    Lee M, Samstein RM, Valero C, et al. Tumor mutational burden as a predictive biomarker for checkpoint inhibitor immunotherapy[J]. Hum Vaccin Immunother, 2020, 16(1): 112-115. doi: 10.1080/21645515.2019.1631136

    [25]

    Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2): 202-206. doi: 10.1038/s41588-018-0312-8

    [26]

    Balachandran VP, Łuksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer[J]. Nature, 2017, 551(7681): 512-516. doi: 10.1038/nature24462

    [27]

    Richman LP, Vonderheide RH, Rech AJ. Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade[J]. Cell Syst, 2019, 9(4): 375-382. e4. doi: 10.1016/j.cels.2019.08.009

    [28]

    Huang J, Xu B, Mo H, et al. Safety, Activity, and Biomarkers of SHR-1210, an Anti-PD-1 Antibody, for Patients with Advanced Esophageal Carcinoma[J]. Clin Cancer Res, 2018, 24(6): 1296-1304. doi: 10.1158/1078-0432.CCR-17-2439

    [29]

    Wang F, Ren C, Zhao Q, et al. Association of frequent amplification of chromosome 11q13 in esophageal squamous cell cancer with clinical benefit to immune check point blockade[J]. J Clin Oncol, 2019, 37(15_suppl): 4036. doi: 10.1200/JCO.2019.37.15_suppl.4036

    [30]

    Li L, Li M, Wang X. Cancer type-dependent correlations between TP53 mutations and antitumor immunity[J]. DNA Repair (Amst), 2020, 88: 102785. doi: 10.1016/j.dnarep.2020.102785

    [31]

    Zhang P, Huang Y. Genomic alterations in KMT2 family predict outcome of immune checkpoint therapy in multiple cancers[J]. J Hematol Oncol, 2021, 14(1): 39. doi: 10.1186/s13045-021-01050-0

    [32]

    Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types[J]. JAMA Oncol, 2019, 5(10): 1504-1506. doi: 10.1001/jamaoncol.2019.2963

    [33]

    Sudo K, Kato K, Matsuzaki J, et al. Identification of serum microRNAs predicting the response of esophageal squamous-cell carcinoma to nivolumab[J]. Jpn J Clin Oncol, 2020, 50(2): 114-121.

    [34]

    Huang S, Zhang J, Lai X, et al. Identification of Novel Tumor Microenvironment-Related Long Noncoding RNAs to Determine the Prognosis and Response to Immunotherapy of Hepatocellular Carcinoma Patients[J]. Front Mol Biosci, 2021, 8: 781307. doi: 10.3389/fmolb.2021.781307

    [35]

    Luo YH, Yang YP, Chien CS, et al. Plasma Level of Circular RNA hsa_circ_0000190 Correlates with Tumor Progression and Poor Treatment Response in Advanced Lung Cancers[J]. Cancers (Basel), 2020, 12(7): 1740. doi: 10.3390/cancers12071740

    [36]

    Kato R, Yamasaki M, Urakawa S, et al. Increased Tim-3(+) T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients[J]. Cancer Immunol Immunother, 2018, 67(11): 1673-1683. doi: 10.1007/s00262-018-2225-x

    [37]

    Kim JY, Choi JK, Jung H. Genome-wide methylation patterns predict clinical benefit of immunotherapy in lung cancer[J]. Clin Epigenetics, 2020, 12(1): 119. doi: 10.1186/s13148-020-00907-4

    [38]

    Malczewski AB, Navarro S, Coward JI, et al. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e001383. doi: 10.1136/jitc-2020-001383

    [39]

    Baiden-Amissah REM, Tuyaerts S. Contribution of Aging, Obesity, and Microbiota on Tumor Immunotherapy Efficacy and Toxicity[J]. Int J Mol Sci, 2019, 20(14): 3586. doi: 10.3390/ijms20143586

计量
  • 文章访问数:  1833
  • HTML全文浏览量:  446
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-09-01
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-12-24

目录

/

返回文章
返回
x 关闭 永久关闭