高级搜索

外泌体传递非编码RNA调控乳腺癌耐药

郭鑫, 杜华, 师迎旭

郭鑫, 杜华, 师迎旭. 外泌体传递非编码RNA调控乳腺癌耐药[J]. 肿瘤防治研究, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142
引用本文: 郭鑫, 杜华, 师迎旭. 外泌体传递非编码RNA调控乳腺癌耐药[J]. 肿瘤防治研究, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142
GUO Xin, DU Hua, SHI Yingxu. Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142
Citation: GUO Xin, DU Hua, SHI Yingxu. Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142

外泌体传递非编码RNA调控乳腺癌耐药

基金项目: 

内蒙古自治区自然科学基金 2019LH08032

内蒙古自治区自然科学基金 2021MS08093

内蒙古自治区高等学校“青年科技英才”支持计划 NJYT-18-B18

内蒙古医科大学致远人才计划—善学人才 ZY0202020

2021年度内蒙古医科大学校级重点项目 YKD2021ZD007

内蒙古医科大学面上项目 YKD2021MS006

内蒙古医科大学教改项目 NYJXGG2021026

详细信息
    作者简介:

    郭鑫(1997-),男,硕士,技师,主要从事分子诊断方面研究

    通讯作者:

    师迎旭(1978-),男,博士,副研究员,主要从事细胞生物学方面研究,E-mail: shiyingxu@126.com

  • 中图分类号: R737.9

Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance

Funding: 

Natural Science Foundation of Inner Mongolia Autonomous Region 2019LH08032

Natural Science Foundation of lnner Mongolia Autonomous Region 2021MS08093

"Young Science and Technology Talents" Support Program for Higher Education Institutions in Inner Mongolia Autonomous Region NJYT-18-B18

Inner Mongolia Medical University Zhiyuan Talent Program-Good Learning Talents ZY0202020

2021 Inner Mongolia Medical University School-level Key Project YKD2021ZD007

General Program of Inner Mongolia Medical University YKD2021MS006

Inner Mongolia Medical University Education Reform Project NYJXGG2021026

More Information
  • 摘要:

    耐药性是乳腺癌治疗的重大挑战之一。有多种原因和机制导致乳腺癌耐药的发生。外泌体及其内容物(DNA、mRNA、蛋白质、非编码RNA等)是细胞间通讯的重要介质,在肿瘤进展、转移、复发中发挥作用。其中,外泌体携带的非编码RNA在限制药物疗效方面起着至关重要的作用。本文对国内外关于外泌体非编码RNA与乳腺癌耐药相关的最新研究进展作一综述。

     

    Abstract:

    Drug resistance is a major challenge in the treatment of breast cancer. Many causes and mechanisms lead to the occurrence of drug resistance in breast cancer. Exosomes and their contents (DNA, mRNA, protein, and non-coding RNA) are important mediators of intercellular communication and play a role in tumor progression, metastasis, and recurrence. Among them, non-coding RNA carried by exosomes plays a crucial role in limiting drug efficacy. This article reviews the latest research progress on the relationship between exosomal non-coding RNA and drug resistance of breast cancer at home and abroad.

     

  • 热休克转录因子1(heat shock transcription factor 1, HSF1)是调控热休克蛋白(heat-shock proteins, HSPs)表达的转录因子。细胞未受刺激时,HSF1以单体形式在细胞核和细胞质之间穿梭,当细胞受到刺激时,游离的HSF1以三聚体的形式磷酸化,并入核诱导靶基因的转录[1],在热激过程中Ser326位点的HSF1磷酸化可以正向调控转录。在此期间,HSF1与错误折叠的蛋白质被蛋白酶体降解,并延迟热休克反应的衰减直到清除受损的蛋白质为止[2]

    FBXW7(F-box and WD repeat domain containing 7)是F-box家族的重要成员之一,为SCF(SKP1-Cullin1-F-box)E3泛素连接酶复合物的靶蛋白识别组分[3]。FBXW7是继K-RAS和APC之后研究发现在结直肠癌中最常见的突变基因之一[4]。研究发现结直肠癌组织中FBXW7的表达水平低于正常组织,其失活会诱导癌症的发生[5]。约7.5%的转移性结直肠腺癌患者中发现FBXW7错义突变,与结直肠癌不良预后有关[6]。FBXW7介导多种癌蛋白的降解,如NF-κB、c-Myc、Cyclin E、Notch1、c-Jun和Brg1等[7]。FBXW7位于人4号染色体长臂(4q31.3)上,分为FBXW7α、FBXW7β和FBXW7γ三个亚型,其中FBXW7α位于细胞核中,FBXW7β位于细胞质中,而FBXW7γ位于核仁中[8]。FBXW7α通过与GSK3β激活的Ser303和Ser307位点磷酸化HSF1结合,介导HSF1泛素化降解。有研究发现缺失FBXW7α导致黑色素瘤细胞核HSF1蛋白表达水平明显升高,而对细胞质HSF1表达没有影响[9]。然而,FBXW7对结直肠癌细胞胞质和胞核内的HSF1在热刺激后及未刺激状态下的表达定位的调控尚不清楚。本研究利用细胞免疫荧光法观察敲除FBXW7对温热刺激及恢复期间HSF1在胞质和胞核中的定位的影响,明确FBXW7在HSF1及激活的HSF1在胞核中的表达定位的调控作用。

    人结直肠癌细胞系HCT116、DLD1及HCT116 WT、HCT116 FBXW7 KO、DLD1 WT及DLD1 FBXW7 KO、真核表达质粒PcDNA3-HA-FBXW7α[10]均由美国哈佛医学院贝斯以色列女执事医疗中心病理系魏文毅教授馈赠。FBXW7基因敲除的HCT116和DLD1细胞由Bert Vogelstein和Christoph Lengauer构建,得到Bert Vogelstein的馈赠[11]。主要通过利用细菌人工染色体(BAC)系统进行基因克隆,并通过Cre/loxP敲除系统和单克隆细胞筛选获得FBXW7基因敲除的HCT116和DLD1细胞[12]。结直肠癌细胞均用含10%胎牛血清的DMEM培养液置于37℃、5%CO2的培养箱中培养。胎牛血清、DMEM高糖培养基、Opti-MEM减血清培养基购自美国Gibco公司,BCA试剂盒(货号P0011)及蛋白质提取相关试剂均购自上海碧云天公司,转染试剂Lipofectamine3000(货号L3000075)购自美国Invitrogen公司。

    取对数生长期的结直肠癌细胞株DLD1接种于6个60 mm的培养皿中,接种密度以过夜培养后细胞融合度为70%~90%为准。按照Lipofectamine3000说明书提供的操作流程,以Opti-MEM减血清培养基配制转染试剂及质粒工作液,将PcDNA3-HA-FBXW7α真核表达质粒转染入DLD1细胞中。转染6 h后更换含10%胎牛血清的完全培养基继续培养。

    收集转染24 h后的DLD1细胞,加入细胞裂解液RIPA提取细胞总蛋白,用BCA法检测蛋白质浓度,通过10%SDS-PAGE分离蛋白,采用90V电压将分离蛋白条带转移到活化的PVDF膜。用含5%脱脂牛奶的TBST溶液封闭膜1.5 h,然后加入兔抗人HSF1(CST,货号4356,1:1000)、兔抗人pHSF1Ser326单克隆抗体(Invitrogen,货号MA5-32105,1:1000)及鼠抗人β-actin(CST,货号3700,1:1000)、HA(Sigma,货号H9658,1:1000)单克隆抗体4℃孵育过夜;加入HRP标记的羊抗鼠IgG(CST,货号7076,1:5000)及羊抗兔IgG(CST,货号7074,1:5000)。滴加化学发光HRP底物ECL发光液(Millipore,货号WBKLS0500),使用MiniChemi 610Plus型化学发光成像系统进行曝光显影。实验重复3次。

    收集HCT116WT、HCT116 FBXW7 KO、DLD1 WT及DLD1 FBXW7 KO细胞, 加入细胞裂解液RIPA提取细胞总蛋白,取对数生长期细胞进行42℃水浴温热刺激1 h,并在37℃培养恢复30 min和60 min,用核蛋白提取试剂盒提取细胞核蛋白和胞质蛋白。用BCA法检测蛋白质浓度,通过10%SDS-PAGE分离蛋白,采用90V电压将分离蛋白条带转移到活化的PVDF膜。用含5%脱脂牛奶的TBST溶液封闭膜1.5 h,然后加入兔抗人HSF1(CST,货号4356,1:1000)、兔抗人pHSF1Ser326单克隆抗体(Invitrogen,货号MA5-32105,1:1000)及鼠抗人β-actin(CST,货号3700,1:1000)、Lamin A/C(CST,货号4777,1:1000)单克隆抗体4℃孵育过夜;加入HRP标记的羊抗鼠IgG(CST,货号7076,1:5000)及羊抗兔IgG(CST,货号7074,1:5000),滴加化学发光HRP底物ECL发光液(Millipore,货号WBKLS0500),使用MiniChemi 610Plus型化学发光成像系统进行曝光显影。实验重复3次。

    取对数生长期的HCT116 WT、HCT116 FBXW7 KO、DLD1 WT及DLD1 FBXW7 KO细胞,制备细胞爬片。待细胞融合度达90%时,进行42℃水浴温热刺激1 h,并在37℃培养恢复30 min和60 min,用4%多聚甲醛溶液室温固定20 min;用0.3%Triton X-100室温通透20 min;3%BSA室温封闭1 h;加入兔抗人HSF1(CST,货号4356,1:200)和pHSF1Ser326单克隆抗体(Invitrogen,货号MA5-32105,1:200)4℃过夜;加入Alexa Fluor 488标记(Invitrogen,货号A-11008,1:400)及Alexa Fluor 555标记(Invitrogen,货号A-21428,1:400)的羊抗兔IgG,避光反应2 h;加入DAPI荧光封片剂对细胞核进行染色及封片,荧光显微镜(日本奥林巴斯BX53)观察HSF1的表达位置变化。实验重复3次。

    应用SPSS23.0统计学软件对实验结果进行统计学分析。所有实验独立重复3次,结果数据以(x±s)表示。两组间比较采用独立样本t检验,以P < 0.05为差异有统计学意义。

    与对照组相比,DLD1细胞转染PcDNA3-HA-FBXW7α真核表达质粒后,pHSF1Ser326蛋白的表达水平显著降低(P=0.0003),见图 1。提示FBXW7α可以靶向下调HSF1的蛋白表达水平。

    图  1  转染后DLD1细胞中pHSF1Ser326蛋白的表达(n=3)
    Figure  1  Expressions of pHSF1Ser326 protein decreased in DLD1 cells after transfection (n=3)

    Western blot检测结果显示,DLD1 FBXW7 KO细胞的HSF1总蛋白的表达水平高于DLD1 WT细胞(P=0.029),HCT116 FBXW7 KO细胞的HSF1总蛋白的表达水平高于HCT116 WT细胞(P=0.039);HCT116 FBXW7 KO细胞中pHSF1Ser326总蛋白的表达水平显著高于HCT116 WT细胞(P=0.019),见图 2A。进一步采用细胞免疫荧光法观察到FBXW7 KO细胞中HSF1和pHSF1Ser326主要聚集在胞核,在胞质中仅有少量表达。结果表明,FBXW7的缺失导致HSF1和pHSF1Ser326总蛋白表达水平显著升高,并且主要在胞核中表达,见图 2B~C

    图  2  FBXW7的缺失导致结直肠癌细胞中HSF1和pHSF1Ser326主要在胞核中累积
    Figure  2  Loss of FBXW7 resulted in accumulation of HSF1 and pHSF1Ser326 mainly in nucleus of CRC cells
    A: the expression levels of HSF1 protein and pHSF1Ser326 protein in CRC cells were detected by Western blot; B: immunofluorescent staining of HSF1 protein and β-actin protein in CRC cells; C: immunofluorescent staining of pHSF1Ser326 protein in CRC cells (B, C×400, staining with 4, 6-diamidino-2-phenylindole (DAPI), Alexa Fluor 488 and Alexa Fluor 555, scale bar=50μm); n=3; WT: wild type.

    对结直肠癌细胞42℃温热刺激持续1 h,并在37℃培养指定时间。细胞免疫荧光法检测结果显示,温热刺激细胞后HSF1在细胞核中表达迅速增强,恢复30 min后,HCT116 WT和DLD1 WT细胞中的核HSF1表达逐渐恢复至未刺激水平,FBXW7 KO的两种细胞中HSF1在核中表达较强,恢复60 min后仍然可以看到在核中表达较强,见图 3。表明FBXW7的缺失导致温热刺激细胞后HSF1恢复至未刺激水平的时间延长。

    图  3  FBXW7的缺失使温热刺激细胞后HSF1在胞核中累积时间延长
    Figure  3  Loss of FBXW7 prolonged accumulation of HSF1 in nucleus after warm stimulation
    A, B: the expression of HSF1 in the nucleus and cytoplasm of CRC cells during recovery from heat shock were detected by immunofluorescence staining method (×400, staining with 4', 6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 488, scale bar=50μm).

    对结直肠癌细胞分别进行42℃温热刺激持续1 h,并在37℃恢复指定时间。Western blot结果显示,温热刺激后37℃恢复培养60 min组(Recovery 60 min组)和37℃培养对照组(Untreated组)的DLD1 WT细胞中的pHSF1Ser326蛋白表达水平差异无统计学意义(P=0.305),即恢复60 min后DLD1 WT细胞逐渐恢复至未刺激水平。与Untreated组相比,Recovery 60 min组的DLD1细胞的FBXW7 KO细胞核中pHSF1Ser326蛋白表达水平明显上调(P=0.007),HCT116细胞的FBXW7 KO细胞核中pHSF1Ser326蛋白表达水平也显著上调(P=0.002),见图 4A~B。细胞免疫荧光结果显示,温热刺激后FBXW7 KO细胞中的pHSF1Ser326在细胞核中表达均高于WT细胞,37℃培养60 min后,HCT116 WT和DLD1 WT细胞恢复至未刺激水平,FBXW7 KO细胞中的pHSF1Ser326在胞核中表达仍然很强,在胞质中表达较弱,见图 4C~D。以上结果表明,热激后HSF1表达水平恢复受阻可能与缺失FBXW7不能降解核HSF1有关,FBXW7可能调控激活及衰减期间的HSF1在胞质和胞核中的表达定位。

    图  4  FBXW7调控激活的HSF1在胞质和胞核中的表达定位
    Figure  4  FBXW7 regulated the expression and the localization of activate HSF1 in cytoplasm and nucleus.
    A, B: the expression levels of pHSF1Ser326 protein in the nucleus were detected by Western blot; C, D: the expression of pHSF1Ser326 was detected using fluorescence microscopy(×400, staining with 4', 6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 488, scale bar=50μm); **: P < 0.01, ***: P < 0.001, n=3; 1: Untreated; 2: Heat shock 42℃ 1h; 3: Recovery 30min; 4: Recovery 60min

    热休克反应(heat shock response, HSR)是一种细胞保护机制,可防止由于温热刺激、缺氧、细胞内pH值波动或暴露于重金属等的刺激引起的蛋白质错误折叠。HSR由转录因子HSF1诱导热休克蛋白的动态转录过程。在未受刺激的细胞中,HSF1处于失活状态;当受到应激刺激时,HSF1在细胞核中被磷酸化,形成同源三聚体,结合DNA并激活热休克基因转录[1]。HSF1的激活和恢复期间受到多种翻译后修饰的调节,尤其是磷酸化对HSF1调控转录具有重要作用。Ser121、Ser303、Ser307以及Ser363磷酸化负调控HSF1的转录活性,而mTOR、MEK和P38 MAPK可以催化Ser326的磷酸化从而激活HSF1[13]。基质中磷酸化HSF1的激活与卵巢癌、慢性淋巴细胞性白血病和骨髓瘤患者的预后不良有关[14]。另有研究发现,细胞核中HSF1的表达水平增高与结直肠癌、乳腺癌、肾癌和口腔鳞状细胞癌的转移和不良的生存率有关[15]。因此,深入研究激活后的HSF1在细胞核中的表达水平及定位对肿瘤的治疗具有重要意义。

    既往研究表明,FBXW7对HSF1的泛素化和降解与肿瘤细胞耐药有关[16]。在胃癌中,细胞核中的代谢酶PDK3以破坏HSF1磷酸化的方式阻止FBXW7介导的HSF1蛋白酶体降解,PDK3与HSF1相互作用形成正反馈回路以促进糖酵解[17]。近期有研究发现,ERK1/2在耐药细胞中可降低FBXW7的表达,并且通过抑制HSF1的泛素化降解导致MDR1的转录激活[18]。FBXW7参与HSF1靶向肠缺血再灌注期间的泛素化和降解,表明FBXW7可能是抑制肠缺血再灌注期间肠黏膜凋亡的潜在治疗靶标[19]。Nikos等[9]发现HSF1可以与FBXW7α结合,是FBXW7α的泛素化底物,通过Western blot实验发现缺失FBXW7的结直肠癌细胞HCT116在基础状态下,核HSF1蛋白的表达水平增高,胞质HSF1蛋白表达无变化;而温热刺激后的HSF1蛋白在核中表达水平显著增高,且热休克反应时间延长;他们还发现缺失FBXW7导致黑色素瘤细胞WM39的核HSF1表达水平明显升高,而对细胞质HSF1表达无影响,温热刺激后核HSF1蛋白表达水平增强,恢复期间缺失FBXW7的WM39细胞中的HSF1在核中累积[9]。HSF1在胞核中的累积是由于HSF1在胞质和胞核中的动态转移变化,还是温热刺激时FBXW7不调控HSF1的降解,导致HSF1在核中累积,还尚不清楚。

    本研究采用细胞免疫荧光法对敲除FBXW7的结直肠癌细胞进行42℃温热刺激并观察HSF1的表达定位,此细胞免疫荧光HSF1的定位结果与文献[9]所报道的缺失FBXW7导致HSF1蛋白在核中累积的Western blot结果一致。为进一步探讨FBXW7是否调节激活的HSF1在胞核中的表达和定位,通过细胞免疫荧光实验发现,敲除FBXW7的细胞温热刺激并恢复37℃培养30 min后,pHSF1Ser326在胞核中的表达仍较强,表明缺失FBXW7导致细胞核中的HSF1降解受阻。有研究表明,HSF1基础表达主要在细胞核内[1]。研究发现,Western blot实验表明HSF1在胞质有较强的表达,而免疫荧光实验却显示HSF1主要定位在细胞核。这可能是由于分离细胞核和细胞质所用的裂解液造成的,大多数以单体形式存在的HSF1可能在裂解作用下从细胞核中提取出来,而三聚体的HSF1在提取过程中仍与细胞核DNA紧密结合[20]

    综上所述,本研究证实了FBXW7可调控HSF1及激活的磷酸化HSF1在胞质和胞核中的表达和定位。推测FBXW7可能成为结直肠癌治疗的潜在分子调控靶点。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    郭鑫:查阅文献、撰写论文
    杜华:查阅文献、绘制图表
    师迎旭:指导及审校论文
  • 图  1   受体细胞摄取外泌体

    Figure  1   Recipient cell uptake of exosomes

    表  1   外泌体ncRNA与乳腺癌耐药的关系

    Table  1   Relationship between exosomal ncRNA and breast cancer drug resistance introduced in the literature

    下载: 导出CSV
  • [1]

    Wilkinson L, Gathani T. Understanding breast cancer as a global health concern[J]. Br J Radiol, 2022, 95(1130): 20211033. doi: 10.1259/bjr.20211033

    [2]

    Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002

    [3]

    Han M, Gu Y, Lu P, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation[J]. Mol Cancer, 2020, 19(1): 26. doi: 10.1186/s12943-020-1145-5

    [4]

    Liang G, Zhu Y, Ali DJ, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer[J]. J Nanobiotechnology, 2020, 18(1): 10. doi: 10.1186/s12951-019-0563-2

    [5]

    Gerard L, Duvivier L, Gillet JP. Targeting tumor resistance mechanisms[J]. Fac Rev, 2021, 10: 6.

    [6]

    Patel NH, Xu J, Saleh T, et al. Influence of nonprotective autophagy and the autophagic switch on sensitivity to cisplatin in non-small cell lung cancer cells[J]. Biochem Pharmacol, 2020, 175: 113896. doi: 10.1016/j.bcp.2020.113896

    [7]

    Tsubata Y, Tanino R, Isobe T. Current Therapeutic Strategies and Prospects for EGFR Mutation-Positive Lung Cancer Based on the Mechanisms Underlying Drug Resistance[J]. Cells, 2021, 10(11): 3192. doi: 10.3390/cells10113192

    [8]

    Su D. MCM7 affects the cisplatin resistance of liver cancer cells and the development of liver cancer by regulating the PI3K/Akt signaling pathway[J]. Immunopharmacol Immunotoxicol, 2022, 44(1): 17-27. doi: 10.1080/08923973.2021.1991372

    [9]

    Wang JQ, Wang B, Ma LY, et al. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin[J]. Exp Cell Res, 2021, 405(2): 112728. doi: 10.1016/j.yexcr.2021.112728

    [10]

    Choi JD, Kim TJ, Jeong BC, et al. ISL1 promotes enzalutamide resistance in castration-resistant prostate cancer (CRPC) through epithelial to mesenchymal transition (EMT)[J]. Sci Rep, 2021, 11(1): 21984. doi: 10.1038/s41598-021-01003-0

    [11]

    Nickoloff JA, Taylor L, Sharma N, et al. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy[J]. Cancer Drug Resist, 2021, 4(2): 244-263.

    [12]

    Goh CY, Wyse C, Ho M, et al. Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses?[J]. Cancer Lett, 2020, 473: 90-97. doi: 10.1016/j.canlet.2019.12.046

    [13]

    Yang Q, Zhao S, Shi Z, et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 120. doi: 10.1186/s13046-021-01901-1

    [14]

    Han M, Hu J, Lu P, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer[J]. Cell Death Dis, 2020, 11(1): 43. doi: 10.1038/s41419-020-2250-5

    [15]

    Zhao Y, Jin LJ, Zhang XY. Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1[J]. Aging (Albany NY), 2021, 13(14): 18498-18514.

    [16]

    Liu J, Zhu S, Tang W, et al. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p[J]. Cancer Cell Int, 2021, 21(1): 55. doi: 10.1186/s12935-020-01659-0

    [17]

    Jia Z, Zhu H, Sun H, et al. Adipose Mesenchymal Stem Cell-Derived Exosomal microRNA-1236 Reduces Resistance of Breast Cancer Cells to Cisplatin by Suppressing SLC9A1 and the Wnt/β-Catenin Signaling[J]. Cancer Manag Res, 2020, 12: 8733-8744. doi: 10.2147/CMAR.S270200

    [18]

    Pan X, Hong X, Lai J, et al. Exosomal MicroRNA-221-3p Confers Adriamycin Resistance in Breast Cancer Cells by Targeting PIK3R1[J]. Front Oncol, 2020, 10: 441. doi: 10.3389/fonc.2020.00441

    [19]

    Yu DD, Wu Y, Zhang XH, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222[J]. Tumour Biol, 2016, 37(3): 3227-3235. doi: 10.1007/s13277-015-4161-0

    [20]

    Li XJ, Ren ZJ, Tang JH, et al. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer[J]. Cell Physiol Biochem, 2017, 44(5): 1741-1748. doi: 10.1159/000485780

    [21]

    Santos JC, Lima NDS, Sarian LO, et al. Exosome-mediated breast cancer chemoresistance via miR-155 transfer[J]. Sci Rep, 2018, 8(1): 829. doi: 10.1038/s41598-018-19339-5

    [22]

    Qian X, Qu H, Zhang F, et al. Exosomal long noncoding RNA AGAP2-AS1 regulates trastuzumab resistance via inducing autophagy in breast cancer[J]. Am J Cancer Res, 2021, 11(5): 1962-1981.

    [23]

    Zheng Z, Chen M, Xing P, et al. Increased Expression of Exosomal AGAP2-AS1 (AGAP2 Antisense RNA 1) In Breast Cancer Cells Inhibits Trastuzumab-Induced Cell Cytotoxicity[J]. Med Sci Monit, 2019, 25: 2211-2220. doi: 10.12659/MSM.915419

    [24]

    Wang X, Pei X, Guo G, et al. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer[J]. J Cell Physiol, 2020, 235(10): 6896-6904. doi: 10.1002/jcp.29585

    [25]

    Dong H, Wang W, Chen R, et al. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer[J]. Int J Oncol, 2018, 53(3): 1013-1026.

    [26]

    Yu Q, Li Y, Peng S, et al. Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p[J]. Open Med (Wars), 2021, 16(1): 512-525. doi: 10.1515/med-2021-0249

    [27] 董正远. 外泌体lncRNAH19调控miR-340-3p诱导乳腺癌紫杉醇耐药的研究[D]. 蚌埠医学院, 2021.

    Dong ZY. Exosomal lncRNAH19 regulates miR-340-3p to induce paclitaxel resistance in breast cancer[D]. Bengbu Medical College, 2021.

    [28]

    Hu K, Liu X, Li Y, et al. Exosomes Mediated Transfer of Circ_UBE2D2 Enhances the Resistance of Breast Cancer to Tamoxifen by Binding to MiR-200a-3p[J]. Med Sci Monit, 2020, 26: e922253.

    [29]

    Zhang H, Yan C, Wang Y. Exosome-mediated transfer of circHIPK3 promotes trastuzumab chemoresistance in breast cancer[J]. J Drug Target, 2021, 29(9): 1004-1015. doi: 10.1080/1061186X.2021.1906882

    [30]

    Lin Q, Zhou CR, Bai MJ, et al. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis[J]. Am J Transl Res, 2020, 12(3): 1080-1095.

    [31]

    Usman RM, Razzaq F, Akbar A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance[J]. Asia Pac J Clin Oncol, 2021, 17(3): 193-208. doi: 10.1111/ajco.13449

    [32]

    Wen N, Lv Q, Du ZG. MicroRNAs involved in drug resistance of breast cancer by regulating autophagy[J]. J Zhejiang Univ Sci B, 2020, 21(9): 690-702. doi: 10.1631/jzus.B2000076

    [33]

    Spear JM, Lu Z, Russu WA. Pharmacological Inhibition of CDK8 in Triple-Negative Breast Cancer Cell Line MDA-MB-468 Increases E2F1 Protein, Induces Phosphorylation of STAT3 and Apoptosis[J]. Molecules, 2020, 25(23): 5728. doi: 10.3390/molecules25235728

    [34]

    Zhang M, Wang F, Xiang Z, et al. LncRNA XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miR-200c-3p to upregulate ANLN[J]. Clin Exp Pharmacol Physiol, 2020, 47(8): 1464-1472. doi: 10.1111/1440-1681.13307

    [35]

    Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer[J]. Mol Pharmacol, 2020, 97(2): 72-89. doi: 10.1124/mol.119.117978

    [36]

    Bian P, Dou Z, Jia Z, et al. Activated Wnt/β-Catenin signaling contributes to E3 ubiquitin ligase EDD-conferred docetaxel resistance in prostate cancer[J]. Life Sci, 2020, 254: 116816. doi: 10.1016/j.lfs.2019.116816

    [37]

    Below M, Osipo C. Notch Signaling in Breast Cancer: A Role in Drug Resistance[J]. Cells, 2020, 9(10): 2204. doi: 10.3390/cells9102204

    [38]

    Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer[J]. Int J Mol Sci, 2021, 22(20): 11088. doi: 10.3390/ijms222011088

    [39]

    Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9): 797. doi: 10.1038/s41419-020-02998-6

    [40]

    Zhou X, Wang L, Zou W, et al. hnRNPA2B1 Associated with Recruitment of RNA into Exosomes Plays a Key Role in Herpes Simplex Virus 1 Release from Infected Cells[J]. J Virol, 2020, 94(13): e00367-20.

    [41]

    Senichkin VV, Pervushin NV, Zuev AP, et al. Targeting Bcl-2 Family Proteins: What, Where, When?[J]. Biochemistry (Mosc), 2020, 85(10): 1210-1226. doi: 10.1134/S0006297920100090

    [42] 梁新丽, 徐希强, 董伟, 等. 外泌体来源的非编码RNA介导肿瘤耐药研究进展[J]. 国际药学研究杂志, 2020, 47(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYZ202003001.htm

    Liang XL, Xu XQ, Dong W, et al. Exosome-derived non-coding RNA-mediated chemotherapy resistance in cancer: research advances[J]. Guo Ji Yao Xue Yan Jiu Za Zhi, 2020, 47(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYZ202003001.htm

    [43]

    Li Y, Feng W, Kong M, et al. Exosomal circRNAs: A new star in cancer[J]. Life Sci, 2021, 269: 119039. doi: 10.1016/j.lfs.2021.119039

    [44] 郭马娣, 赵娟, 黄小义. 以外泌体为基础的液体活检在胰腺癌诊断中的研究进展[J]. 肿瘤防治研究, 2022, 49(3): 240-245. doi: 10.3971/j.issn.1000-8578.2022.21.1008

    Guo MD, Zhao J, Huang XY. Research Progress of Exosome-based Liquid Biopsy in Diagnosis of Pancreatic Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(3): 240-245. doi: 10.3971/j.issn.1000-8578.2022.21.1008

  • 期刊类型引用(1)

    1. 刘艳春,贾儒渊,樊志慧,王朝凤,苏海燕,曹文娟,徐丹丹. 表皮生长因子受体在食管鳞状细胞癌组织中的表达及其临床意义. 临床误诊误治. 2024(10): 35-38+43 . 百度学术

    其他类型引用(0)

图(1)  /  表(1)
计量
  • 文章访问数:  1206
  • HTML全文浏览量:  388
  • PDF下载量:  662
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-03-30
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-10-24

目录

/

返回文章
返回
x 关闭 永久关闭