高级搜索

恶性肿瘤免疫检查点治疗的未来发展方向

董爽, 朱贤敏, 钟易, 蔡茜, 胡胜

董爽, 朱贤敏, 钟易, 蔡茜, 胡胜. 恶性肿瘤免疫检查点治疗的未来发展方向[J]. 肿瘤防治研究, 2022, 49(5): 478-483. DOI: 10.3971/j.issn.1000-8578.2022.21.1149
引用本文: 董爽, 朱贤敏, 钟易, 蔡茜, 胡胜. 恶性肿瘤免疫检查点治疗的未来发展方向[J]. 肿瘤防治研究, 2022, 49(5): 478-483. DOI: 10.3971/j.issn.1000-8578.2022.21.1149
DONG Shuang, ZHU Xianmin, ZHONG Yi, CAI Qian, HU Sheng. Future of Immune Checkpoint Therapy for Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(5): 478-483. DOI: 10.3971/j.issn.1000-8578.2022.21.1149
Citation: DONG Shuang, ZHU Xianmin, ZHONG Yi, CAI Qian, HU Sheng. Future of Immune Checkpoint Therapy for Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(5): 478-483. DOI: 10.3971/j.issn.1000-8578.2022.21.1149

恶性肿瘤免疫检查点治疗的未来发展方向

基金项目: 

国家自然科学基金面上项目 81972308

湖北省卫生健康委员会面上项目 WJ2019H128

湖北省卫生健康委员会面上项目 WJ2021M190

武汉市科技局应用基础前沿重点项目 2019020701011438

详细信息
    作者简介:

    董爽(1986-),女,硕士,主治医师,主要从事恶性肿瘤靶向、免疫治疗的临床和基础研究

    通讯作者:

    胡胜(1971-),男,博士,主任医师,主要从事肿瘤免疫治疗的基础与临床研究,E-mail: ehusmn@163.com

  • 中图分类号: R730.5

Future of Immune Checkpoint Therapy for Cancer

Funding: 

National Natural Science Foundation of China 81972308

The Foundation of Health Commission of Hubei Province WJ2019H128

The Foundation of Health Commission of Hubei Province WJ2021M190

The Foundation of Wuhan Science and Technology Bureau 2019020701011438

More Information
  • 摘要:

    2011年,FDA批准了第一个免疫检查点抑制剂(ICIs)——CTLA-4抑制剂Ipilimumab,以ICIs为代表的免疫检查点治疗(ICT)取得了突破进展。ICIs可诱导某些肿瘤患者亚群产生持久的抗肿瘤反应,但目前仍存在较多问题,比如获益人群的选择、严重免疫毒性的管理,以及如何通过合理的组合策略克服原发和适应性耐药机制来改善治疗反应等。本综述全面分析了当前对ICIs的反应和抵抗机制,并提出了通过更好的患者选择和合理组合来实现疗效最大化和毒性最小化的途径。

     

    Abstract:

    In 2011, the FDA approved ipilimumab, the first immune checkpoint inhibitor(ICI), targeting CTLA-4, opening the field of immune checkpoint therapy (ICT). ICIs can induce durable clinical responses and improve survival in selected population. However, significant challenges still remain, including mechanisms of resistance, patient selection, management of serious immune-related adverse events, and rational therapeutic combinations. This review surveys the current understanding of response and resistance to ICIs and proposes a path forward to improving efficacy and minimizing toxicities.

     

  • 鼻咽癌(nasopharyngeal carcinoma, NPC)是我国以及东南亚地区常见的头颈部恶性肿瘤之一,死亡率约为1.74/100 000[1]。鼻咽癌治疗后复发病例占治疗失败病例的30%,复发的鼻咽癌往往具有肿瘤乏氧[2]、肿瘤侵袭能力增强、治疗前贫血[3]等更加恶劣的病理学表现,从而加大复发后的治疗难度。研究表明,鼻咽癌复发患者5年内生存率仅为30%[4]。乏氧诱导因子-1α(hypoxia induce factor-1α, HIF-1α)是机体应对乏氧的主要效应因子,已经被证实与肿瘤缺氧、侵袭能力增强等细胞生物学行为密切相关[5]。程序死亡受体-配体1(programmed death ligand 1, PD-L1)是程序性死亡受体1(programmed death 1, PD-1)的配体之一,可以抑制T细胞的活化,诱导肿瘤患者体内T细胞凋亡从而导致肿瘤细胞免疫逃逸[6]。临床研究表明在口腔癌和肺癌中PD-L1的表达与HIF-1α有关[7-8]。因此,乏氧诱导的鼻咽癌恶化很可能与HIF-1α调节PD-L1的表达相关,但具体调控机制尚未明确。本实验以鼻咽癌细胞为研究对象,通过在乏氧条件下沉默HIF-1α基因,检测细胞增殖和细胞凋亡率,研究了乏氧条件下鼻咽癌中HIF-1α对于鼻咽癌细胞生物学行为的影响,并且初步探讨鼻咽癌细胞中HIF-1α通过上调PD-L1促进鼻咽癌恶性发展的相关分子机制。

    人类鼻咽癌细胞系CNE2(低分化癌),由中山肿瘤防治中心赠予。

    RPMI 1640培养基购自美国Hyclone公司,胎牛血清(Fetal bovine serum, FBS)、青霉素-链霉素双抗浓缩液(×100)、无血清培养基Opti-MEM、胰酶(Trypsin-EDTA)购自美国Gibco公司;核糖核酸酶抑制剂、MTT细胞增殖检测剂购自美国Sigma公司;Triton-X 100购自北京中杉金桥生物技术有限公司;HIF-1α小鼠单克隆抗体(93kD)、STAT3兔单克隆抗体(88kD)、PSTAT3兔单克隆抗体(88kD)、PD-L1兔单克隆抗体(40~45kD)、兔多抗GAPDH(37kD)均购自英国Abcam公司;RNA提取试剂TRIzol reagent、LipofectamineTM 2000购自美国Invitrogen公司;反转录试剂盒、PCR Master Mix试剂盒购自加拿大Fermentas公司;siRNA及PCR目标基因引物的合成由北京擎科新业生物技术有限公司提供。

    采用10%FBS、1%青霉素和链霉素的RPMI 1640培养基培养细胞。取对数生长期、生长状态良好的CNE2细胞,进行细胞计数,并以每孔2×105个细胞接种于6孔板,37℃、5%CO2培养箱中培养。设常氧组、乏氧组、HIF-1α-siRNA+乏氧组、NC-siRNA+乏氧组四组进行实验。常氧组的细胞在20%O2中培养,乏氧组在1%O2中培养,HIF-1α-siRNA+乏氧组的细胞在1%O2中培养并转染HIF-1α-siRNA,NC-siRNA+乏氧组在1%O2中培养并转染NC-siRNA。按照脂质体LipofectamineTM2000转染试剂说明书进行细胞转染,将根据HIF-1α序列设计筛选的HIF-1α-siRNA转染至CNE2细胞,同时另设一组CNE2细胞转染无意义的干扰序列NC-siRNA作为对照。培养48 h后进行后续实验,转染序列见表 1

    表  1  转染序列
    Table  1  Transfection sequence
    下载: 导出CSV 
    | 显示表格

    按照不同的条件处理细胞以后,弃去培养基停止培养,加入TRIzol提取总RNA,按照反转录试剂盒说明书将RNA反转录成cDNA,PCR产物通过1.2%琼脂糖凝胶电泳分离,于凝胶成像仪中成像。同时按照荧光定量PCR试剂盒说明书检测mRNA水平。反应条件为:50℃ 2 min,95℃ 10 min;95℃ 30 s,60℃ 30 s,40个循环。引物序列见表 2。最终数据采用2-ΔΔCt方法进行分析(检测siRNA敲低效率)。通过RT-PCR检测HIF-1α、PD-L1及STAT3分子的mRNA表达水平。

    表  2  引物序列及扩增片段长度
    Table  2  Primer sequence and amplified fragment length
    下载: 导出CSV 
    | 显示表格

    将各组细胞按照不同条件处理后,弃去培养基终止培养后,用0.25%的胰酶消化,按照每孔5×104个/毫升接种至96孔板,按照不同条件培养过夜后,每孔加入10 μl MTT,37℃孵育4 h后,加入150 μl DMSO,最后用酶标仪测量568 nm波长处的OD值,细胞存活率(%)=(实验组OD均值/对照组OD均值)×100%。

    将各组不同细胞按不同条件处理后,48 h收集各组细胞,按AnnexinV-APC/7-AAD细胞凋亡检测试剂盒说明书进行检测,加入Bind Buffer混匀,反应15 min后加入Annexin-APC检测试剂混匀,最后上流式细胞仪检测。

    按照不同条件处理细胞各组细胞后,弃去培养基终止培养,每皿加入100 μl细胞裂解液(PMSF: 裂解液=1:100)裂解细胞,冰上裂解30 min后收集裂解的细胞,按照BSA试剂盒测量提取的蛋白浓度。将提取的蛋白用5×蛋白上样缓冲液混合后,在沸水中煮沸变性。样品用10%分离胶或者8%分离胶以及5%浓缩胶进行电泳分离,电转、封闭之后,4℃孵育一抗过夜(GADPH: 1:1 000,STAT3: 1:1 500, PSTAT3: 1:200 000, HIF-1α: 1:1 000, PD-L1: 1:1 000),第二日用HRP标记羊抗兔二抗室温孵育2 h,最后用凝胶成像仪成像,BandScan5.0分析胶片灰度值。

    数据应用均数±标准差(x±s)表示,组间比较采用单因素方差分析。实验数据采用SPSS17.0软件进行分析;双侧检验P < 0.05为差异有统计学意义。

    我们针对HIF-1α设计合成了三条不同的siRNA序列,筛选出其中敲低效率最高的一条,即HIF-1α-siRNA-2进行后续实验,见图 1A。MTT实验结果显示乏氧条件下细胞增殖率显著大于常氧组(均P=0.000),见图 1B。与常氧组相比,HIF-1α-siRNA+乏氧显著降低了细胞增殖率(P=0.000);与NC-siRNA+乏氧组相比,HIF-1α-siRNA+乏氧也显著降低了细胞增殖(P=0.000)。由此可得,乏氧条件下HIF-1α在CNE2的细胞增殖中发挥了重要作用。

    图  1  转染HIF-1α-siRNA后CNE2细胞对HIF-1α基因的沉默效率(A)和MTT检测不同处理条件下CNE2细胞的增殖水平(B)
    Figure  1  Silencing efficiency of HIF-1α in CNE2 cells(A) and proliferation of CNE2 cells under different treatment conditions detected by MTT(B)
    ***: P < 0.001.

    流式细胞术显示,乏氧条件下细胞凋亡率与常氧培养条件下细胞凋亡率无明显差异。相比于乏氧组的细胞,乏氧条件下转染HIF-1α-siRNA后显著增加了细胞凋亡率(P=0.000)。此外,HIF-1α-siRNA+乏氧组的细胞凋亡率也明显大于NC-siRNA+乏氧组(P=0.001),见图 2。实验结果提示靶向沉默HIF-1α基因能够促进人鼻咽癌细胞CNE2的凋亡。

    图  2  流式细胞术检测不同处理条件下CNE2细胞的凋亡水平
    Figure  2  Apoptosis of CNE2 cells under different treatment conditions detected by flow cytometry

    RT-PCR检测显示,乏氧组的HIF-1α mRNA水平显著高于常氧组(P=0.004),HIF-1α-siRNA转染后CNE2细胞HIF-1α mRNA水平显著下降,显著低于乏氧组(P=0.000)和NC-siRNA+乏氧组(P=0.000),显示转染成功,见图 3。HIF-1α-siRNA+乏氧组的PD-L1 mRNA水平显著低于乏氧组(P=0.000)和NC-siRNA+乏氧组(P=0.000),显示HIF-1α mRNA水平与PD-L1 mRNA水平呈正比。此外,乏氧组的STAT3 mRNA表达水平相比常氧组显著上升(P=0.009),HIF-1α-siRNA+乏氧组的STAT3 mRNA水平显著低于乏氧组(P=0.001)和NC-siRNA+乏氧组(P=0.001),见图 4。结果表明HIF-1α mRNA水平与PD-L1 mRNA水平成正相关,且STAT3可能是HIF-1α正性调控PD-L1的关键信号因子。

    图  3  RT-PCR检测CNE2细胞中HIF-1α、PD-L1及STAT3的表达
    Figure  3  HIF-1α, PD-L1 and STAT3 expression in CNE2 cells detected by RT-PCR
    1: Normoxia; 2: Hypoxia; 3: HIF-1α-siRNA+Hypoxia; 4: NC-siRNA+Hypoxia.
    图  4  不同条件下CNE2细胞中HIF-1α(A)、PD-L1(B)及STAT3(C)mRNA表达水平的变化
    Figure  4  HIF-1α(A), PD-L1(B) and STAT3(C) mRNA expression in CNE2 cells under different conditions
    **: P < 0.01; ***: P < 0.001; 1: Normoxia; 2: Hypoxia; 3: HIF-1α-siRNA+Hypoxia; 4: NC-siRNA+Hypoxia.

    Western blot检测结果显示,乏氧组的HIF-1α蛋白水平显著高于常氧组(P=0.004),HIF-1α-siRNA转染后的CNE2细胞HIF-1α分子蛋白水平显著下降,显著低于乏氧组(P=0.001)和NC-siRNA+乏氧组(P=0.001)。同时,HIF-1α-siRNA+乏氧组的PD-L1蛋白水平显著低于乏氧组(P=0.017)和NC-siRNA+乏氧组(P=0.0017),显示HIF-1α分子蛋白水平与PD-L1蛋白水平成正比。此外,相比常氧组,乏氧组的STAT3和pSTAT3蛋白表达水平均显著上升(P=0.011),HIF-1α-siRNA+乏氧组的STAT3蛋白水平显著低于乏氧组(P=0.009)和NC-siRNA+乏氧组(P=0.001),HIF-1α-siRNA+乏氧组的pSTAT3蛋白水平显著低于乏氧组和NC-siRNA+乏氧组(均P < 0.001),见图 5~6。实验结果表明,乏氧条件下,随着HIF-1α诱导PD-L1的高表达,STAT3磷酸化水平也增加。反之,HIF-1α的靶向沉默抑制了PD-L1的表达和STAT3磷酸化水平。我们认为HIF-1α诱导PD-L1表达上调可能通过活化STAT3实现。

    图  5  Western blot检测CNE2细胞中HIF-1α, PD-L1, STAT3及pSTAT3蛋白的表达
    Figure  5  HIF-1α, PD-L1, STAT3 and pSTAT3 protein expression in CNE2 cells detected by Western blot
    1: Normoxia; 2: Hypoxia; 3: HIF-1α-siRNA+Hypoxia; 4: NC-siRNA+Hypoxia.
    图  6  不同条件下CNE2细胞中HIF-1α(A)、PD-L1(B)、STAT3(C)及pSTAT3(D)蛋白表达水平的变化
    Figure  6  HIF-1α(A), PD-L1(B), STAT3(C) and pSTAT3(D) proteins expression in CNE2 cells under different conditions
    *: P < 0.05; **: P < 0.01; ***: P < 0.001; 1: Normoxia; 2: Hypoxia; 3: HIF-1α-siRNA+Hypoxia; 4: NC-siRNA+Hypoxia.

    鼻咽癌是我国最常见的头颈部恶性肿瘤之一,传统的治疗方法难以根治。乏氧在肿瘤微环境中非常常见,且能影响恶性肿瘤的生理状况。HIF-1α是乏氧环境下调控基因的重要转录因子[8]。研究表明,HIF-1α在包括乳腺癌[9]、鼻咽癌及结肠癌等多种人类肿瘤中过度表达,且HIF-1α高表达往往与恶性肿瘤患者的不良预后有关。有研究证明原花青素可以通过降低HIF-1α从而抑制鼻咽癌细胞生长[10]。然而,HIF-1α在鼻咽癌中的具体机制尚不明确。本研究发现,乏氧组HIF-1α高表达下的高增殖率和低凋亡率可被siRNA-HIF-1α转染有效逆转。这些结果证明HIF-1α表达可以促使乏氧条件下鼻咽癌的恶性进展。

    随着免疫治疗的发展,PD-L1的表达水平与鼻咽癌发展开始得到密切关注。PD-L1往往在肿瘤细胞表面高表达,通过与PD-1的结合抑制T细胞活化,促进肿瘤细胞免疫逃逸。研究表明乏氧条件下HIF-1α可能通过调节PD-L1,造成肿瘤细胞免疫耐受,促进癌症恶性发展[11-14]。最新研究发现鼻咽癌白人患者中肿瘤细胞上PD-L1表达与不良结果相关[15]。本研究发现,鼻咽癌细胞中HIF-1α的表达与PD-L1的表达呈显著正相关。除此之外,乏氧条件下,鼻咽癌细胞中STAT3 mRNA和蛋白水平显著高于常氧组,而转染siRNA-HIF-1α逆转了这一现象,同时降低了STAT3的磷酸化水平。已有研究报道STAT3是介导PD-L1表达的调控因子[16],而伊卡利汀可以通过抑制STAT3磷酸化抑制鼻咽癌细胞CNE2的增殖、迁移和侵袭[17]。因此,PD-L1可能是乏氧诱导鼻咽癌恶性进展的重要原因,并且涉及STAT3的活化,这与Xing等[18]研究结论一致。

    PD-L1免疫治疗可能给鼻咽癌治疗带来新的治疗策略。PD-L1抗体阿特珠单抗,Durvalumab已可以用来治疗非小细胞肺癌和膀胱癌[19]。PD1免疫抑制剂联合化学疗法作为转移性鼻咽癌的一线治疗可以缓解91%患者的病情,34%复发鼻咽癌患者的病情[20],IFNβ和抗PD-1的组合可以增强NK细胞对鼻咽癌细胞的细胞毒性[21],但是尚未有临床报导PD-L1抑制剂对鼻咽癌的治疗作用。

    PD-L1是鼻咽癌患者预后的独立影响因素[22],结合本研究发现,PD-L1在免疫耐受中的调控作用将会给鼻咽癌治疗带来新的方向,PD-L1有望为鼻咽癌免疫疗法提供新的分子靶标。另外,本研究在评估PD-L1的表达与临床鼻咽癌患者的相关性,验证PD-L1抑制剂对鼻咽癌的治疗作用等实验方面还待展开,如何使鼻咽癌免疫治疗更优化,需要我们结合更多的实验和大数据分析,进一步探索PD-L1影响鼻咽癌的相关机制,考察以PD-L1为靶点的治疗方案。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    董爽:文献检索、资料整理及论文撰写
    朱贤敏、钟易、蔡茜:部分文献检索、资料整理及论文校对
    胡胜:项目分工、总体指导及论文修改
  • [1]

    Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy[J]. Cell, 2017, 168(4): 707-723. doi: 10.1016/j.cell.2017.01.017

    [2]

    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation[J]. Annu Rev Immunol, 2009, 27: 591-619. doi: 10.1146/annurev.immunol.021908.132706

    [3]

    Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci USA, 2010, 107(9): 4275-4280. doi: 10.1073/pnas.0915174107

    [4]

    Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade[J]. Cell, 2017, 170(6): 1120-1133. doi: 10.1016/j.cell.2017.07.024

    [5]

    Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer[J]. Nat Rev Cancer, 2021, 21(6): 345-359. doi: 10.1038/s41568-021-00347-z

    [6]

    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours[J]. Nat Rev Immunol, 2012, 12(4): 253-268. doi: 10.1038/nri3175

    [7]

    Canè S, Ugel S, Trovato R, et al. The Endless Saga of Monocyte Diversity[J]. Front Immunol, 2019, 10: 1786. doi: 10.3389/fimmu.2019.01786

    [8]

    Lin JH, Huffman AP, Wattenberg MM, et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis[J]. J Exp Med, 2020, 217(8): e20190673. doi: 10.1084/jem.20190673

    [9]

    Hardy-Werbin M, Rocha P, Arpi O, et al. Serum cytokine levels as predictive biomarkers of benefit from ipilimumab in small cell lung cancer[J]. Oncoimmunology, 2019, 8(6): e1593810. doi: 10.1080/2162402X.2019.1593810

    [10]

    Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockadebased immuno-therapy[J]. Science, 2018, 362(6411): eaar3593. doi: 10.1126/science.aar3593

    [11]

    Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients[J]. Proc Natl Acad Sci USA, 2008, 105(8): 3005-3010. doi: 10.1073/pnas.0712237105

    [12]

    Luke JJ, Bao R, Sweis RF, et al. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers[J]. Clin Cancer Res, 2019, 25(10): 3074-3083. doi: 10.1158/1078-0432.CCR-18-1942

    [13]

    Grasso CS, Tsoi J, Onyshchenko M, et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma[J]. Cancer Cell, 2020, 38(4): 500-515. doi: 10.1016/j.ccell.2020.08.005

    [14]

    Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy[J]. Cell, 2016, 167(2): 397-404. doi: 10.1016/j.cell.2016.08.069

    [15]

    Zhang Y, Yang Q, Zeng X, et al. MET amplification attenuates lung tumor response to immunotherapy by inhibiting STING[J]. Cancer Discov, 2021, 11(11): 2726-2737. doi: 10.1158/2159-8290.CD-20-1500

    [16]

    Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy[J]. Nat Rev Cancer, 2019, 19(6): 307-325. doi: 10.1038/s41568-019-0144-6

    [17]

    Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197-218. doi: 10.1038/s41573-018-0007-y

    [18]

    Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times[J]. NAR Cancer, 2020, 2(1): zcaa002. doi: 10.1093/narcan/zcaa002

    [19]

    Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, et al. Paradigms on Immunotherapy Combinations with Chemotherapy[J]. Cancer Discov, 2021, 11(6): 1353-1367. doi: 10.1158/2159-8290.CD-20-1312

    [20]

    Huinen ZR, Huijbers EJM, van Beijnum JR, et al. Anti-angiogenic agents-overcoming tumour endothelial cell anergy and improving immunotherapy outcomes[J]. Nat Rev Clin Oncol, 2021, 18(8): 527-540. doi: 10.1038/s41571-021-00496-y

    [21]

    Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301. doi: 10.1056/NEJMoa1716948

    [22]

    Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma[J]. N Engl J Med, 2019, 380(12): 1116-1127. doi: 10.1056/NEJMoa1816714

    [23]

    Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380(12): 1103-1115. doi: 10.1056/NEJMoa1816047

    [24]

    Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. doi: 10.1056/NEJMoa1915745

    [25]

    Makker V, Taylor MH, Aghajanian C, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer[J]. J Clin Oncol, 2020, 38(26): 2981-2992. doi: 10.1200/JCO.19.02627

    [26]

    Uzhachenko RV, Bharti V, Ouyang Z, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors[J]. Cell Rep, 2021, 35(12): 109271. doi: 10.1016/j.celrep.2021.109271

    [27]

    Gutzmer R, Stroyakovskiy D, Gogas H, et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutationpositive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2020, 395(10240): 1835-1844. doi: 10.1016/S0140-6736(20)30934-X

    [28]

    Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the typeⅠinterferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity[J]. Immunity, 2015, 42(2): 332-343. doi: 10.1016/j.immuni.2015.01.012

    [29]

    Loi S, Giobbie-Hurder A, Gombos A, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial[J]. Lancet Oncol, 2019, 20(3): 371-382. doi: 10.1016/S1470-2045(18)30812-X

    [30]

    Jiao S, Subudhi SK, Aparicio A, et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy[J]. Cell, 2019, 179(5): 1177-1190. doi: 10.1016/j.cell.2019.10.029

    [31]

    Le Naour J, Zitvogel L, Galluzzi L, et al. Trial watch: STING agonists in cancer therapy[J]. Oncoimmunology, 2020, 9(1): 1777624. doi: 10.1080/2162402X.2020.1777624

    [32]

    Choi Y, Shi Y, Haymaker CL, et al. T-cell agonists in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000966. doi: 10.1136/jitc-2020-000966

    [33]

    Carthon BC, Wolchok JD, Yuan J, et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial[J]. Clin Cancer Res, 2010, 16(10): 2861-2871. doi: 10.1158/1078-0432.CCR-10-0569

    [34]

    Eggermont AMM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage Ⅲ melanoma[J]. N Engl J Med, 2018, 378(19): 1789-801. doi: 10.1056/NEJMoa1802357

    [35]

    Davis-Marcisak EF, Deshpande A, Stein-O'Brien GL, et al. From bench to bedside: Single-cell analysis for cancer immunotherapy[J]. Cancer Cell, 2021, 39(8): 1062-1080. doi: 10.1016/j.ccell.2021.07.004

  • 期刊类型引用(2)

    1. 兰峰,张波. 多配体蛋白聚糖1表达水平与乳腺癌术后子宫内膜病变的相关性研究. 中华内分泌外科杂志. 2023(06): 734-738 . 百度学术
    2. 李猷,王旗,陈颖卿,王茜茜. 免疫调节分子VSIG4在炎症性疾病中的作用机制研究进展. 中国医药. 2022(08): 1271-1275 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1476
  • HTML全文浏览量:  416
  • PDF下载量:  684
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-12-10
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-05-24

目录

/

返回文章
返回
x 关闭 永久关闭