高级搜索

铁死亡在头颈部鳞状细胞癌中的研究进展

谢章弘, 华清泉

谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
引用本文: 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
XIE Zhanghong, HUA Qingquan. Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
Citation: XIE Zhanghong, HUA Qingquan. Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117

铁死亡在头颈部鳞状细胞癌中的研究进展

详细信息
    作者简介:

    谢章弘(1996-),男,硕士,住院医师,主要从事头颈肿瘤工作

    华清泉   医学博士,教授,主任医师,博士研究生导师,武汉大学人民医院耳鼻咽喉头颈外科主任。现任中华医学会耳鼻咽喉头颈外科分会委员、中国抗癌协会头颈肿瘤专业委员会常务委员、中国中西医结合学会耳鼻咽喉学会颅底专业委员会主任委员、湖北省医学会耳鼻喉科学分会主任委员、湖北省抗癌协会头颈肿瘤专业委员会主任委员。主要从事头颈肿瘤、耳科学与侧颅底外科。擅长头颈部恶性肿瘤切除与修复、中耳炎手术、人工听觉技术、听神经瘤手术等。承担国家自然科学基金3项,卫生部行业基金1项,省市科研项目4项。发表国内核心期刊论文100余篇,SCI论文10余篇

    通讯作者:

    华清泉(1965-),男,博士,教授,主任医师,主要从事头颈肿瘤、耳科学及颅底外科工作,E-mail: hqqrm@sina.com

  • 中图分类号: R739.91

Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma

More Information
  • 摘要:

    头颈部鳞状细胞癌(HNSCC)作为全球发病率极高的癌症之一,由于晚期HNSCC手术治疗后易发生术后复发及对部分化疗药物的耐药性,患者预后情况并不乐观。因此,提高化学药物治疗HNSCC的效率,改善HNSCC患者预后成为目前亟需解决的问题。最新研究发现铁死亡对部分类型的肿瘤细胞的生长增殖具有调节作用,一定程度上降低了肿瘤治疗中的耐药性,在肿瘤的防治中展现出了巨大的潜力。因此,本文概述铁死亡抗肿瘤的作用机制及其在HNSCC中的研究进展,为HNSCC的治疗提供新的依据。

     

    Abstract:

    Squamous cell carcinoma of the head and neck (HNSCC) is one of the cancers with the highest incidence rate in the world. Due to the presence of postoperative recurrence and resistance to some chemotherapeutics after the surgery, the prognosis of advanced HNSCC patients is not optimistic. Therefore, it is urgent to improve the efficiency of chemotherapeutics for HNSCC and the prognosis of HNSCC patients. Recent studies have found that ferroptosis has regulatory effect on the growth and proliferation of some types of tumor cells, reducing drug resistance in tumor treatment to a certain extent, and showing great potential in the prevention and treatment of tumors. Therefore, this article will summarize the anti-tumor mechanism of ferroptosis and the current research progress in HNSCC, providing new evidence for the treatment of HNSCC.

     

  • 多发性骨髓瘤(multiple myeloma, MM)是浆细胞的恶性克隆增殖性疾病,表现为骨髓中大量恶性浆细胞的增殖和聚集,分泌单克隆的免疫球蛋白或其片段(M蛋白),导致贫血、肾功能不全、骨质破坏等一系列临床症状[1]。进入本世纪以来,由于自体干细胞移植的开展和靶向药物如蛋白酶体抑制剂(硼替佐米、伊沙佐米、卡非佐米)、免疫调节剂(沙利度胺、来那度胺、泊马度胺)和免疫治疗(单克隆抗体、CAR-T以及CAR-NK等)的应用,MM治疗的效果出现前所未有的改观,有效率升高,生存期延长[2-3]。然而总体而言MM仍然是一种不能被治愈的疾病,大多数患者最终难逃复发的厄运,并且随着复发次数增多,瘤细胞的耐药性增强,最终复发而不治[4]。为此,有必要对MM的发病机制和治疗策略进行回顾和梳理,以进一步改进其治疗方法,最终达到治愈MM的目标。

    MM主要生长在骨髓中的恶性肿瘤,复杂的骨髓瘤微环境中的细胞和非细胞组分对骨髓瘤细胞的生长与存活起到独特的维持作用,特别是骨髓微环境中的免疫细胞(包括T细胞、自然杀伤细胞、单核-巨噬细胞、树突状细胞、髓源抑制细胞等),不仅失去对恶性转化的骨髓瘤细胞的免疫监督和免疫杀伤作用,而且会在骨髓瘤细胞的影响下,发生功能失调,甚至促进和维系骨髓瘤生长和存活,诱导耐药的产生,导致疾病的反复复发[5-6]

    研究表明,在发展至活动期之前,MM都要经历意义未明的单克隆丙种球蛋白血症(monoclonal gammopathies of undetermined significance, MGUS)和冒烟型多发性骨髓瘤(smoldering MM, SMM)阶段[7-8]。尽管在MGUS和SMM中检测到的遗传损伤(如基因突变、染色体易位和拷贝数的改变等)与MM相似,但并非所有的MGUS和SMM都会发展为活动性MM。尤其是MGUS人群,每年只有大约1%发展为MM,大多数个体将终生保持这种意义未明的状态[9]。在MGUS向SMM和活动性MM的发展过程中,骨髓微环境中的免疫细胞的功能状态也会发生失调,如具有干性记忆性特征的T淋巴细胞耗尽以及具有衰老与耗竭特征的T淋巴细胞的积累,而且其程度随着病情进展而加重。耗竭T细胞的特点是效应功能丧失,抑制性受体表达增高,表观遗传和转录谱改变,代谢方式改变,难以有效发挥杀伤骨髓瘤细胞的效能。T细胞耗竭是患者免疫功能障碍的主要原因之一[10-12]。进一步研究显示,经过治疗达到完全缓解甚至是微小残留病阴性患者中,其骨髓中免疫细胞功能状态与患者的无进展生存密切相关。说明单凭克隆性浆细胞的内部因素(基因组的改变)不足以驱动MM的发生、发展。骨髓免疫微环境在MM的发生、发展中发挥着至关重要的作用[13]

    MM的发生、发展是一个多因素作用下的多步骤、复杂、动态的进化过程。具体而言,多克隆浆细胞在一些起始性的突变(如IgH易位、13q-、高二倍体等)驱动下,获得生长优势,成为单克隆的浆细胞。克隆性浆细胞为了获得更强的增殖和生存能力,一方面必须适应骨髓的微环境,发生新的遗传学和表观遗传学变化,使细胞内部增殖信号激活,凋亡信号受到抑制,并在营养竞争、免疫逃逸方面相对于正常细胞有显著的优势;另一方面瘤细胞要对骨髓微环境进行改造,使其有利于自身的生长[14-16]。瘤细胞和免疫细胞的相互作用及其生物学特性的改变都是动态变化的。骨髓瘤细胞可以表达许多能够与免疫细胞相互作用的分子,例如在骨髓瘤细胞基因组中检测到的激活诱导的胞苷脱氨酶(activation-induced cytidine deaminase, AID),其表达水平可以受到树突状细胞核因子κB受体活化因子配体(receptor activator of nuclear factor kappa-B ligand, RANKL)的调控,提示基因组的不稳定性与MM肿瘤微环境之间可以发生直接的相互作用[17]。此外,MGUS和MM细胞还可以表达钙连蛋白、钙网蛋白以及PD-L1分子,以抑制免疫细胞的功能[18]

    免疫系统对于早期肿瘤的免疫监督可以分为三个阶段,即消灭、平衡和逃逸,简称3E[19]。在Vk*MYC小鼠骨髓瘤模型中,T细胞和NK细胞可以通过CD226作用于肿瘤细胞,产生穿孔素和γ干扰素以杀伤骨髓瘤细胞,发挥免疫监督的功能[20]。也有学者报道对MM患者进行同基因造血干细胞移植时,加用免疫检查点分子TIGIT抗体可以防止CD8+T细胞的耗竭,延迟病情复发[21]。研究表明,不仅MM患者体内存在瘤细胞特异性的细胞毒性T淋巴细胞和特异性抗体,而且处于MGUS阶段的克隆性浆细胞可以被免疫细胞所识别并激活免疫细胞,这些个体体内可以检测到MGUS特异性的CD4+和CD8+淋巴细胞介导的免疫反应[22]。但随着MM的发展进程,干样记忆性T细胞的消耗并逐渐衰老与耗竭,这些免疫反应似乎不能完全遏制肿瘤的蔓延。MM患者的骨髓NK细胞激活型受体NKG2D、NCR3和CD244的表达降低,而PD-1表达增高,提示这些分子参与了MM的免疫逃逸,也可能是MM免疫治疗的潜在靶点[17]

    越来越多的证据表明,MM的发展进程取决于瘤细胞的进化及其生长的生态系统,其中免疫微环境所扮演的角色日益受到重视。治疗MM,不仅要瞄准骨髓瘤细胞本身,还应该关注骨髓瘤赖以生存的免疫微环境。在当下的靶向和免疫治疗时代,MM的治疗有效率不断提高,缓解深度越来越深,此时更应关注如何调动机体的免疫监督功能,使MM达到长期、持续的缓解,乃至治愈[23]

    近年来,不少新型治疗产品在MM的治疗领域取得令人瞩目的效果。这些新型产品往往在杀灭骨髓瘤细胞的同时,对免疫功能也有强大的调控作用。例如,抗CD38单克隆抗体不仅可以通过抗体依赖细胞介导的细胞毒作用(antibody-dependent cell-mediated cytotoxicity, ADCC)和补体依赖的细胞毒作用(complement-dependent cytotoxicity, CDC)杀伤骨髓瘤细胞,还可以中和CD38的胞外酶活性,减少免疫抑制介质腺苷的产生,同时对表达CD38的免疫抑制细胞也有清除作用[24]。抗CS-1单克隆抗体在杀灭骨髓瘤细胞的同时,还可以与NK细胞表面CS-1结合并激活NK细胞,使之发挥更强大的ADCC效应[25]。刚刚获批或正在研发CAR-T、CAR-NK和双特异性抗体(Bi-specific antibody, BiTEs)药物则是采用基因工程手段来重新激发免疫系统,达到消灭骨髓瘤细胞的目的[26]

    目前的免疫治疗仍然不能根治MM。在研发免疫治疗策略时,以下几点应该引起关注:首先,从理论上讲,实施免疫治疗应该是在疾病的早期开展,因为在疾病早期免疫系统功能处于相对正常状态,能够最大程度地发挥免疫监督功能。在此阶段,倘能通过应用疫苗阻止MGUS向MM的进展,将会达到事半功倍的效果[27];其次,应注意纠正免疫功能的失调。大量研究显示,MM微环境中的免疫细胞处于衰老、耗竭或失能状态,不能有效发挥杀伤骨髓瘤细胞的效能。为此,人们尝试应用靶向PD-1/PD-L1以及其他的免疫检查点如LAG3、TIGIT的抑制剂MM治疗,然而相关临床试验的结果并不理想[28]。提示我们需要寻找新的靶点或探索新的治疗策略,如将免疫检查点抑制剂与其他抗骨髓瘤治疗药物进行联合运用;第三,在接受免疫治疗的机体内,残存的肿瘤细胞也会不断进化,导致对免疫治疗产生耐受。例如,接受抗CD38单抗治疗后复发的患者体内骨髓瘤细胞CD38的表达会明显下调[29]。接受BCMA-CAR-T细胞治疗后复发的患者其瘤细胞BCMA的表达也会显著减少[30]。为此,可在深入研究骨髓瘤细胞靶抗原表达调控的基础之上,采用一些小分子化合物使MM丢失的抗原重新表达,逆转其对免疫治疗的耐受性或恢复其敏感度;最后,深入开展骨髓瘤细胞与免疫微环境相互作用的基础研究。骨髓瘤细胞克隆内的异质性导致其抑制免疫细胞的机制可能有所不同,对免疫细胞功能的影响也会有差异[31-32]。当前各种组学技术在阐明骨髓瘤细胞与免疫细胞的相互作用机制方面有着独特的优势。只有充分阐明免疫微环境的生物学特性,才能有针对性地纠正免疫功能异常,使MM获得长期、持续的缓解乃至治愈。

    多发性骨髓瘤治疗研究发展至今已经取得不少里程碑式的进展,但仍未能实现治愈性目标。患者反复复发的根本原因在于肿瘤细胞与微环境之间发生动态相互作用,使机体免疫系统失去了对肿瘤识别和杀伤的能力。目前,骨髓瘤治疗的焦点已不仅仅局限于针对肿瘤细胞本身,更多的研究聚焦于重塑个体的抗肿瘤免疫,达到免疫正常化。

    道阻且长,行将终至。相信随着人们对MM及其免疫微环境相互作用研究的不断深入,MM免疫治疗效果一定会有进一步提升,治愈MM的目标终将能够实现。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    谢章弘:文献调研整理、论文构思及撰写
    华清泉:文献指导、校对及修改
  • [1]

    Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview[J]. Int J Cancer, 2021, 149(4): 778-789. doi: 10.1002/ijc.33588

    [2]

    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [3]

    Kim YJ, Kim JH. Increasing incidence and improving survival of oral tongue squamous cell carcinoma[J]. Sci Rep, 2020, 10(1): 7877. doi: 10.1038/s41598-020-64748-0

    [4]

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654

    [5]

    Lenze NR, Farquhar DR, Dorismond C, et al. Age and risk of recurrence in oral tongue squamous cell carcinoma: Systematic review[J]. Head Neck, 2020, 42(12): 3755-3768. doi: 10.1002/hed.26464

    [6]

    Roh JL, Kim EH, Jang HJ, et al. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer[J]. Cancer Lett, 2016, 381(1): 96-103. doi: 10.1016/j.canlet.2016.07.035

    [7]

    Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042

    [8]

    Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation[J]. Atophagy, 2020, 17(9): 2054-2081.

    [9]

    Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. doi: 10.1007/s13238-020-00789-5

    [10]

    Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi: 10.1038/s41571-020-00462-0

    [11]

    Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. doi: 10.1038/s41422-020-00441-1

    [12]

    Chen X, Kang R, Kroemer G, et al. Targeting ferroptosis in pancreatic cancer: a double-edged sword[J]. Trends Cancer, 2021, 7(10): 891-901. doi: 10.1016/j.trecan.2021.04.005

    [13]

    Sui X, Zhang R, Liu S, et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer[J]. Front Pharmacol, 2018, 9: 1371. doi: 10.3389/fphar.2018.01371

    [14]

    Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease[J]. Trends Biochem Sci, 2016, 41(3): 274-286. doi: 10.1016/j.tibs.2015.11.012

    [15]

    Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176. doi: 10.1016/j.tcb.2015.10.014

    [16]

    Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. doi: 10.1038/nchembio.2238

    [17]

    Chu B, Kon N, Chen D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019, 21(5): 579-591. doi: 10.1038/s41556-019-0305-6

    [18]

    Magtanong L, Ko PJ, To M, et al. Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State[J]. Cell Chem Biol, 2019, 26(3): 420-432. e9. doi: 10.1016/j.chembiol.2018.11.016

    [19]

    Yan B, Ai Y, Sun Q, et al. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2): 355-369. e10. doi: 10.1016/j.molcel.2020.11.024

    [20]

    Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. doi: 10.1038/nchembio.2079

    [21]

    Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. doi: 10.1038/s41586-019-1705-2

    [22]

    Dai E, Meng L, Kang R, et al. ESCRT-Ⅲ-dependent membrane repair blocks ferroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2): 415-421. doi: 10.1016/j.bbrc.2019.11.110

    [23]

    Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. doi: 10.1021/acscentsci.9b01063

    [24]

    Li B, Yang L, Peng X, et al. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers[J]. Biomed Pharmacother, 2020, 130: 110710. doi: 10.1016/j.biopha.2020.110710

    [25]

    Wang H, Liu C, Zhao Y, et al. Inhibition of LONP1 protects against erastin-induced ferroptosis in Pancreatic ductal adenocarcinoma PANC1 cells[J]. Biochem Biophys Res Commun, 2020, 522(4): 1063-1068. doi: 10.1016/j.bbrc.2019.11.187

    [26]

    Zou Y, Palte MJ, Deik AA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J]. Nat Commun, 2019, 10(1): 1617. doi: 10.1038/s41467-019-09277-9

    [27]

    Yang WH, Chi JT. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis[J]. Mol Cell Oncol, 2020, 7(1): 1699375. doi: 10.1080/23723556.2019.1699375

    [28]

    Müller S, Sindikubwabo F, Cañeque T, et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis[J]. Nat Chem, 2020, 12(10): 929-938. doi: 10.1038/s41557-020-0513-5

    [29]

    Yu W, Chen Y, Putluri N, et al. Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress[J]. Cancers(Basel), 2020, 12(6): 1670.

    [30]

    Ma Z, Zhang H, Lian M, et al. SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma[J]. Oncol Rep, 2017, 38(5): 3019-3029. doi: 10.3892/or.2017.5976

    [31]

    Hémon A, Louandre C, Lailler C, et al. SLC7A11 as a biomarker and therapeutic target in HPV-positive head and neck Squamous Cell Carcinoma[J]. Biochem Biophys Res Commun, 2020, 533(4): 1083-1087. doi: 10.1016/j.bbrc.2020.09.134

    [32]

    Yoshikawa M, Tsuchihashi K, Ishimoto T, et al. xCT Inhibition Depletes CD44v-Expressing Tumor Cells That Are Resistant to EGFR-Targeted Therapy in Head and Neck Squamous Cell Carcinoma[J]. Cancer Res, 2013, 73(6): 1855-1866. doi: 10.1158/0008-5472.CAN-12-3609-T

    [33]

    Okazaki S, Shintani S, Hirata Y, et al. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells[J]. Oncotarget, 2018, 9(73): 33832-33843. doi: 10.18632/oncotarget.26112

    [34]

    Otsuki Y, Yamasaki J, Suina K, et al. Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy[J]. Cancer Sci, 2020, 111(1): 127-136. doi: 10.1111/cas.14224

    [35]

    Roh JL, Kim EH, Jang H, et al. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition[J]. Free Radic Biol Med, 2017, 104: 1-9. doi: 10.1016/j.freeradbiomed.2017.01.002

    [36]

    Zhu T, Shi L, Yu C, et al. Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment[J]. Theranostics, 2019, 9(11): 3293-3307. doi: 10.7150/thno.32867

    [37]

    Lin YH, Chiu V, Huang CY, et al. Promotion of Ferroptosis in Oral Cancer Cell Lines by Chrysophanol[J]. Curr Top Nutraceutical Res, 2019, 18(3): 273-276. doi: 10.37290/ctnr2641-452X.18:273-276

    [38]

    Zhu S, Yu Q, Huo C, et al. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy[J]. Curr Med Chem, 2021, 28(2): 329-345.

    [39]

    Lin R, Zhang Z, Chen L, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells[J]. Cancer Lett, 2016, 381(1): 165-175. doi: 10.1016/j.canlet.2016.07.033

    [40]

    Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radic Biol Med, 2018, 129: 454-462. doi: 10.1016/j.freeradbiomed.2018.10.426

    [41]

    Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis[J]. Redox Biol, 2017, 11: 254-262. doi: 10.1016/j.redox.2016.12.010

    [42]

    Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment[J]. Cell Death Dis, 2021, 12(2): 192. doi: 10.1038/s41419-021-03474-5

    [43]

    Sun X, Ou Z, Xie M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34(45): 5617-5625. doi: 10.1038/onc.2015.32

    [44]

    Mittler R, Darash-Yahana M, Sohn YS, et al. NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer[J]. Antioxid Redox Signal, 2019, 30(8): 1083-1095. doi: 10.1089/ars.2018.7502

    [45]

    Lee J, You JH, Shin D, et al. Inhibition of Glutaredoxin 5 predisposes Cisplatin-resistant Head and Neck Cancer Cells to Ferroptosis[J]. Theranostics, 2020, 10(17): 7775-7786. doi: 10.7150/thno.46903

    [46]

    Kim EH, Shin D, Lee J, et al. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer[J]. Cancer Lett, 2018, 432: 180-190. doi: 10.1016/j.canlet.2018.06.018

    [47]

    Wang X, Liu K, Gong H, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis[J]. Toxicol Appl Pharmacol, 2021, 410: 115363. doi: 10.1016/j.taap.2020.115363

    [48]

    Miyazaki H, Takahashi RU, Prieto-Vila M, et al. CD44 exerts a functional role during EMT induction in cisplatin-resistant head and neck cancer cells[J]. Oncotarget, 2018, 9(11): 10029-10041. doi: 10.18632/oncotarget.24252

    [49]

    Ye J, Jiang X, Dong Z, et al. Low-Concentration PTX And RSL3 Inhibits Tumor Cell Growth Synergistically By Inducing Ferroptosis In Mutant p53 Hypopharyngeal Squamous Carcinoma[J]. Cancer Manag Res, 2019, 11: 9783-9792. doi: 10.2147/CMAR.S217944

    [50]

    Han F, Li W, Chen T, et al. Ferroptosis-related genes for predicting prognosis of patients with laryngeal squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2021, 278(8): 2919-2925. doi: 10.1007/s00405-021-06789-3

    [51]

    He F, Chen Z, Deng W, et al. Development and validation of a novel ferroptosis-related gene signature for predicting prognosis and immune microenvironment in head and neck squamous cell carcinoma[J]. Int Immunopharmacol, 2021, 98: 107789. doi: 10.1016/j.intimp.2021.107789

    [52]

    Tang Y, Li C, Zhang YJ, et al. Ferroptosis-Related Long Non-Coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma[J]. Int J Biol Sci, 2021, 17(3): 702-711. doi: 10.7150/ijbs.55552

计量
  • 文章访问数:  1722
  • HTML全文浏览量:  399
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2022-02-20
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-04-24

目录

/

返回文章
返回
x 关闭 永久关闭