高级搜索

TNF-α抑制剂在免疫检查点治疗中的应用研究进展

赵健蓉, 张献全

赵健蓉, 张献全. TNF-α抑制剂在免疫检查点治疗中的应用研究进展[J]. 肿瘤防治研究, 2021, 48(4): 414-417. DOI: 10.3971/j.issn.1000-8578.2021.20.0862
引用本文: 赵健蓉, 张献全. TNF-α抑制剂在免疫检查点治疗中的应用研究进展[J]. 肿瘤防治研究, 2021, 48(4): 414-417. DOI: 10.3971/j.issn.1000-8578.2021.20.0862
ZHAO Jianrong, ZHANG Xianquan. Progress in Application of TNF-α Inhibitors in Immune Checkpoint Therapy[J]. Cancer Research on Prevention and Treatment, 2021, 48(4): 414-417. DOI: 10.3971/j.issn.1000-8578.2021.20.0862
Citation: ZHAO Jianrong, ZHANG Xianquan. Progress in Application of TNF-α Inhibitors in Immune Checkpoint Therapy[J]. Cancer Research on Prevention and Treatment, 2021, 48(4): 414-417. DOI: 10.3971/j.issn.1000-8578.2021.20.0862

TNF-α抑制剂在免疫检查点治疗中的应用研究进展

详细信息
    作者简介:

    赵健蓉(1995-),女,硕士在读,主要从事肿瘤免疫治疗、耐药机制方面的研究

    通讯作者:

    张献全(1965-),男,博士,主任医师,主要从事肿瘤耐药机制、信号转导和分子靶向治疗方面的研究,E-mail: xqzhng@163.com

  • 中图分类号: R730.51

Progress in Application of TNF-α Inhibitors in Immune Checkpoint Therapy

More Information
  • 摘要:

    免疫检查点抑制剂显著提高了晚期恶性肿瘤患者的预后,但同时也会出现由免疫系统激活引起的脱靶毒性,即免疫相关的不良事件(irAEs)。严重的irAEs将导致免疫治疗暂时或永久性终止,极大影响了其在临床中的应用。目前临床上处理irAEs主要应用糖皮质激素,一方面严重的不良反应对患者身体造成严重的损害,另一方面大量应用糖皮质激素影响了免疫检查点抑制剂的疗效。近年来TNF-α抑制剂在减轻不良反应等方面取得了较好的效果,本文就TNF-α在防治irAEs应用进展作一综述。

     

    Abstract:

    Immune checkpoint inhibitors significantly improves the prognosis of patients with advanced malignancy, but it is also associated with off-target toxicity caused by activation of the immune system, known as immune-related adverse events (irAEs). Severe irAEs will lead to temporary or permanent termination of immunotherapy, which greatly affects its clinical application. At present, glucocorticoids are mainly used to treat irAEs clinically. On one hand, severe adverse reactions will cause serious damage to patients' health; on the other hand, the extensive application of glucocorticoids will affect the efficacy of immune checkpoint inhibitors. In recent years, TNF-α inhibitors have shown significant effect in reducing toxic and side effects. This paper reviews the progress of TNF-α in preventing and treating irAEs.

     

  • 子宫内膜癌是在北美和欧洲最常见的女性恶性肿瘤,近年来我国的发病率明显增加,发病人群年轻化[1]。子宫内膜癌的发病机制目前尚未完全明确,随着研究的深入,越来越清晰地认识到子宫内膜癌是多种因素协同交叉作用、具有不同遗传和分子特征的一类疾病[2-3]。根据肿瘤发病机制与雌激素依赖相关性,将其分为Ⅰ型和Ⅱ型,80%以上为Ⅰ型子宫内膜癌。遗传易感性是导致个体对相同致癌因素敏感度不一致的重要因素,某些雌激素代谢通路中关键酶可以改变体内雌激素或外源性雌激素及其代谢产物的水平。基因多态性与酶活性有关,雌激素代谢酶基因多态性可能导致子宫内膜癌发病易感性差异[4]。本研究利用SNP分型检测技术,探索雌激素代谢关键酶CYP1B1、CYP1A1和NQO1基因的单核苷酸多态性(single nucleotide polymorphisms, SNPs)位点分布频率与Ⅰ型子宫内膜癌易感性之间关系,以期对Ⅰ型子宫内膜癌的易感人群进行筛查。

    抽取我院2014年3月—2016年10月收治的经病理诊断为子宫内膜样腺癌的103例患者和同期子宫内膜正常的100例其他疾病患者静脉外周全血2~3 ml,作为检测标本。病例和对照组均取得患者的知情同意并详细询问病史,包括初潮年龄、生育状况、绝经年龄、孕产次数、内科并发症及肿瘤家族史。测量身高与体重,并计算体质指数(body mass index, BMI),测量血压,采集静脉血化验空腹血糖(FPG)及血脂、肿瘤标志物[5-6]。年龄31~78岁,平均(51.15±9.69)岁,子宫内膜癌组平均年龄(54.77±8.21)岁,对照组为(46.95±9.65)岁。

    由于Ⅰ型子宫内膜癌为雌激素依赖性肿瘤,结合相关文献报道,在美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI)人类基因组数据库中选择与雌激素代谢相关的关键酶CYP1A1、CYP1B1,具有抗癌突变的依赖还原型辅酶Ⅰ/Ⅱ醌氧化还原酶1(quinone oxido-reductase1, NQO1)3个基因,选取与代谢酶活性密切相关且杂合度大于10%的SNPs位点进行基因型分析。

    利用引物设计软件premier 5.0,在含SNPs的DNA序列上设计PCR引物,并将设计的引物进行引物的同源性比较,选出同源性最小而Tm值和G/C比值合适的引物作为PCR反应引物,所扩增片段应包含要检测的SNPs位点,其位置尽可能设计在PCR扩增片段的中部。

    使用DNA提取试剂盒(DP304-03)从外周血中提取DNA,进行预扩增,琼脂糖凝胶电泳检测DNA完整性。根据设计引物模板,进行延伸反应及延伸产物纯化。PCR扩增反应体系总体积为50 μl,内含5 μl 10×PCR缓冲液,3 μl 25 mmol/L MgCl2溶液,5 μl 2 mmol/L dNTP混合物,1.25 U Taq DNA聚合酶,0.5 μmol/L引物及100g的基因组DNA。反应在MJ公司PTC-100 PCR反应仪中进行。PCR循环条件为95℃预变性10 min,然后94℃变性30 s,60℃复性30 s,72℃延伸30 s,反应40个循环后,72℃再延伸10 min。扩增产物用2%的琼脂糖凝胶电泳检测,4℃保存。PCR产物经纯化后作为测序模板,用Big-Dye末端荧光标记试剂盒进行测序反应,测序反应产物经纯化后在ABI公司3730XL测序仪上进行测序电泳,用Gene codes公司的Sequencer4.2对测序结果进行分析。

    采用SPSS18.0软件对实验数据进行统计学分析,用χ2检验和多因素Logistic回归模型分析各基因型在两组人群中的分布差异及其与子宫内膜癌临床病理特征的相关性,P < 0.05为差异有统计学意义。

    CYP1B1基因SNPs位点rs111888224因无碱基改变未纳入统计,rs1056836、rs2551188、rs10916在研究人群中均存在多态性,但分布频率差异无统计学意义;rs1056836 C、G基因分布频率差异有统计学意义(P=0.0454)。

    CYP1A1基因SNP位点rs4646421在研究人群中存在CT、CC、TT多态性。与CT型相比,CC型为保护基因型,OR=0.479(95%CI: 0.255~0.899),差异有统计学意义(P=0.0219),其C、T基因分布频率差异有统计学意义(P=0.0041),见表 1

    表  1  基因型/等位基因在Ⅰ型子宫内膜癌患者中的分布(n(%))
    Table  1  Genotype/alleles distributions in typeⅠendometrial carcinoma cases (n(%))
    下载: 导出CSV 
    | 显示表格

    对CYP1A1基因rs4646421位点不同基因型与Ⅰ型子宫内膜癌的危险因素相关性进行分层比较,发现在年龄 > 60岁、BMI≥25、绝经延迟、并发高血压的个体中,携带CT+TT突变基因型将增加罹患Ⅰ型子宫内膜癌的风险(P < 0.05),见表 2

    表  2  发病危险因素与基因型分布的关系(n(%))
    Table  2  Association between risk factors and genotypes distributions of SNP(rs4646421) in CYP1A1 (n(%))
    下载: 导出CSV 
    | 显示表格

    雌激素分布在细胞内外表面,通过雌激素受体的核内结合蛋白在靶细胞中保持高亲和力和特异性。涉及雌激素生物合成和代谢的基因的多态性是雌激素受体阳性恶性肿瘤的潜在危险因素,有几种细胞色素P450(CYP)酶参与雌激素的氧化代谢途径[7]。CYP1A1和CYP1B1是代谢产生2-羟基-4-羟基雌激素代谢物的基本酶[8-9],在不同人群中不仅存在多态性,并且在性激素相关组织中的表达高于细胞色素P450超家族的其他成员,其基因多态性与乳腺癌、子宫肌瘤、子宫内膜异位症、宫颈癌等疾病风险相关[10-14]

    CYP1A1基因定位于人类染色体15q22-24,编码由512个氨基酸组成的蛋白质,是细胞色素P450家族中高诱导成员。CYP1A1酶的激活参与内源性和外源性化合物的氧化作用,催化多环芳香族碳氢化合物转化为酚与环氧化合物。一些酚类和环氧化合物可与DNA结合形成加合物,最终转化为致癌物、二醇环氧化物,通过环氧化物水解酶与一些抗肿瘤药物发生耐药,并增加个体肿瘤风险[9, 15]。本研究结果显示CYP1A1基因SNP位点rs4646421在子宫内膜癌人群中存在CT、CC、TT多态性,与携带CT基因型相比,携带CC基因型的个体罹患子宫内膜癌的风险较小,携带T等位基因的个体子宫内膜癌的发病风险高于C等位基因携带者。与携带CC基因型相比,携带TC+TT基因型在年龄 > 60岁、BMI≥25、绝经延迟(超过52岁)、合并高血压的女性中Ⅰ型子宫内膜癌的发病风险增加。

    CYP1B1基因位于染色体2q21-22,其单核苷酸多态性SNP总数有353个,目前研究较多的是SNPrs1056836,其mRNA发生1294位碱基胞嘧啶(cytosine, C)变异为鸟嘌呤(guanine, G),使DNA两条链形成野生CC型,杂合CG型和变异GG型3种基因型,即基因多态性。这种改变导致第三外显子432密码子的碱基由CTG变异为GTG,由其编码的亮氨酸(leucine, Leu)变异为缬氨酸(valine, Val),导致CYP1B1酶蛋白功能的改变[16]。CYP1B1通过多方面影响肿瘤的易感性和预后,在胰岛素抵抗中产生作用,突变型表达的酶之蛋白质表现出更强的激活癌前物质活性,或影响睾酮的6β-羟化作用及性激素的激活代谢等[17-18]

    本研究中CYP1B1基因SNP rs2551188、rs10916两个位点在人群中存在多态性,但分布频率无统计学差异;rs1056836在正常子宫内膜组与子宫内膜癌两组间的基因型分布频率无差异,但发生更多的碱基胞嘧啶变异为鸟嘌呤,可能会使罹患子宫内膜癌的风险增加,以往文献中发现对于单个位点基因突变的表现为阴性结论时,多个位点联合的单倍体基因型研究却往往能得到阳性结论,似乎预示着CYP1B1基因在分子遗传学上有一定的倾向性[16-19],但其与肿瘤易感性及预后的机制问题还存在着诸多争议与疑惑,有待于进一步研究。

    NQO1是一种重要的化学致癌物质代谢酶,具有抗癌作用,可使内源性及外源性醌类化合物通过电子还原反应变成低毒性的氢醌类物质,再转化为水溶性化合物排出体外,降低了细胞发生突变及癌变的概率。如果位点发生突变,使原位编码的氨基酸发生改变,将会导致该酶活性减弱或完全丧失,降低解毒功能且不能维护细胞稳定,增加某些易感个体细胞发生癌变[20]。报道显示NQO1蛋白高表达在卵巢癌、乳腺癌、结直肠癌等肿瘤中,与临床分期晚、分化程度差和淋巴结转移等临床特征有关[21-22],本研究选择的SNP位点rs45488899和rs1800566虽在两组间均存在基因多态性,但分布频率不具有差异性,因此认为这两个SNP位点与Ⅰ型子宫内膜癌的发生无显著相关性。

    本研究通过基因表达谱差异的分析,推测CYP1A1基因rs4646421位点的多态性在Ⅰ型子宫内膜癌的发生发展中起着重要作用,可作为进行高危人群筛查的基因位点,还可以突变的基因型为基础,采取针对性的基因靶向治疗,或者通过修正基因突变谱来改善其预后。但是,基因多态性受复杂的遗传、环境因素、种族等的影响,并与样本量的大小有关,必须经过大样本试验来进一步明确基因多态性与子宫内膜癌易感性之间的基因环境交互作用及具体机制。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    赵健蓉: 文献查阅,论文设计、撰写及修改
    张献全: 论文设计、指导和审校
  • 图  1   TNF-α抑制剂增强ICIs疗效的可能机制

    Figure  1   Possible mechanisms of TNF-α inhibitors promoting efficacy of ICIs

  • [1]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [2]

    Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J]. Ann Oncol, 2015, 26(12): 2375-2391. doi: 10.1093/annonc/mdv383

    [3]

    Hoes JN, Jacobs JWG, Boers M, et al. EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases[J]. Ann Rheum Dis, 2007, 66(12): 1560-1567. doi: 10.1136/ard.2007.072157

    [4]

    Montfort A, Dufau C, Colacios C, et al. Anti-TNF, a magic bullet in cancer immunotherapy?[J]. J Immunother Cancer, 2019, 7(1): 303. doi: 10.1186/s40425-019-0802-y

    [5]

    Palladino MA, Bahjat FR, Theodorakis EA, et al. Anti-TNF-alpha therapies: the next generation[J]. Nat Rev Drug Discov, 2003, 2(9): 736-746. doi: 10.1038/nrd1175

    [6]

    Wang A, Xu Y, Fei Y, et al. The role of immunosuppressive agents in the management of severe and refractory immune-related adverse events[J]. Asia Pac J Clin Oncol, 2020, 16(4): 201-210. doi: 10.1111/ajco.13332

    [7]

    Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review[J]. JAMA Oncol, 2016, 2(10): 1346-1353. doi: 10.1001/jamaoncol.2016.1051

    [8]

    Martins F, Sykiotis GP, Maillard M, et al. New therapeutic perspectives to manage refractory immune checkpoint-related toxicities[J]. Lancet Oncol, 2019, 20(1): e54-e64. doi: 10.1016/S1470-2045(18)30828-3

    [9]

    Johnson DH, Zobniw CM, Trinh VA, et al. Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis[J]. J Immunother Cancer, 2018, 6(1): 103. doi: 10.1186/s40425-018-0412-0

    [10]

    Abu-Sbeih H, Ali FS, Wang X, et al. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor-induced colitis[J]. J Immunother Cancer, 2019, 7(1): 93. doi: 10.1186/s40425-019-0577-1

    [11]

    Wang Y, Abu-Sbeih H, Mao E, et al. Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson[J]. J Immunother Cancer, 2018, 6(1): 37. doi: 10.1186/s40425-018-0346-6

    [12] 王汉萍, 郭潇潇, 周佳鑫, 等. 免疫检查点抑制剂相关肺炎的临床诊治建议[J]. 中国肺癌杂志, 2019, 22(10): 621-626. doi: 10.3779/j.issn.1009-3419.2019.10.03

    Wang HP, Guo XX, Zhou JX, et al. Clinical Diagnosis and Treatment Recommendations for the Pneumonitis Associated with Immune Checkpoint Inhibitor[J]. Zhongguo Fei Ai Za Zhi, 2019, 22(10): 621-626. doi: 10.3779/j.issn.1009-3419.2019.10.03

    [13]

    Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review[J]. JAMA Oncol, 2016, 2(10): 1346-1353. doi: 10.1001/jamaoncol.2016.1051

    [14]

    Suresh K, Voong KR, Shankar B, et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors[J]. J Thorac Oncol, 2018, 13(12): 1930-1939. doi: 10.1016/j.jtho.2018.08.2035

    [15]

    Murdaca G, Spanò F, Contatore M, et al. Immunogenicity of infliximab and adalimumab: what is its role in hypersensitivity and modulation of therapeutic efficacy and safety?[J]. Expert Opin Drug Saf, 2016, 15(1): 43-52. doi: 10.1517/14740338.2016.1112375

    [16]

    Johnson DB, Balko JM, Compton ML, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade[J]. N Engl J Med, 2016, 375(18): 1749-1755. doi: 10.1056/NEJMoa1609214

    [17]

    Agrawal N, Khunger A, Vachhani P, et al. Cardiac Toxicity Associated with Immune Checkpoint Inhibitors: Case Series and Review of the Literature[J]. Case Rep Oncol, 2019, 12(1): 260-276. doi: 10.1159/000498985

    [18]

    Kwon HJ, Coté TR, Cuffe MS, et al. Case reports of heart failure after therapy with a tumor necrosis factor antagonist[J]. Ann Intern Med, 2003, 138(10): 807-811. doi: 10.7326/0003-4819-138-10-200305200-00008

    [19]

    Trinh B, Donath MY, Läubli H. Successful Treatment of Immune Checkpoint Inhibitor-Induced Diabetes With Infliximab[J]. Diabetes Care, 2019, 42(9): e153-e154. doi: 10.2337/dc19-0908

    [20]

    Ghabril M, Bonkovsky HL, Kum C, et al. Liver injury from tumor necrosis factor-α antagonists: analysis of thirty-four cases[J]. Clin Gastroenterol Hepatol, 2013, 11(5): 558-564. e3. doi: 10.1016/j.cgh.2012.12.025

    [21]

    Draghi A, Borch TH, Radic HD, et al. Differential effects of corticosteroids and anti-TNF on tumor-specific immune responses: implications for the management of irAEs[J]. Int J Cancer, 2019, 145(5): 1408-1413. doi: 10.1002/ijc.32080

    [22]

    Bertrand F, Montfort A, Marcheteau E, et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma[J]. Nat Commun, 2017, 8(1): 2256. doi: 10.1038/s41467-017-02358-7

    [23]

    Badran YR, Cohen JV, Brastianos PK, et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events[J]. J Immunother Cancer, 2019, 7(1): 226. doi: 10.1186/s40425-019-0711-0

    [24]

    Montfort A, Dufau C, Colacios C, et al. Anti-TNF, a magic bullet in cancer immunotherapy?[J]. J Immunother Cancer, 2019, 7(1): 303. doi: 10.1186/s40425-019-0802-y

    [25]

    Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination[J]. Nat Rev Clin Oncol, 2016, 13(8): 473-486. doi: 10.1038/nrclinonc.2016.58

    [26]

    Perez-Ruiz E, Minute L, Otano I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy[J]. Nature, 2019, 569(7756): 428-432. doi: 10.1038/s41586-019-1162-y

    [27]

    Alvarez M, Otano I, Minute L, et al. Impact of prophylactic TNF blockade in the dual PD-1 and CTLA-4 immunotherapy efficacy and toxicity[J]. Cell Stress, 2019, 3(7): 236-239. doi: 10.15698/cst2019.07.193

    [28]

    Montfort A, Colacios C, Levade T, et al. The TNF Paradox in Cancer Progression and Immunotherapy[J]. Front Immunol, 2019, 10: 1818. doi: 10.3389/fimmu.2019.01818

    [29]

    Li B, Vincent A, Cates J, et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site[J]. Cancer Res, 2009, 69(1): 338-348. doi: 10.1158/0008-5472.CAN-08-1565

    [30]

    Vredevoogd DW, Kuilman T, Ligtenberg MA, et al. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold[J]. Cell, 2019, 178(3): 585-599. e15. doi: 10.1016/j.cell.2019.06.014

    [31]

    Haratani K, Hayashi H, Chiba Y, et al. Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non-Small-Cell Lung Cancer[J]. JAMA Oncol, 2018, 4(3): 374-378. doi: 10.1001/jamaoncol.2017.2925

图(1)
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  386
  • PDF下载量:  3905
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2021-01-27
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回
x 关闭 永久关闭