高级搜索

早期骨转移分子机制的研究进展

毛昀, 薛鹏, 李林潞, 徐芃芃, 朱世杰

毛昀, 薛鹏, 李林潞, 徐芃芃, 朱世杰. 早期骨转移分子机制的研究进展[J]. 肿瘤防治研究, 2019, 46(9): 856-860. DOI: 10.3971/j.issn.1000-8578.2019.19.0634
引用本文: 毛昀, 薛鹏, 李林潞, 徐芃芃, 朱世杰. 早期骨转移分子机制的研究进展[J]. 肿瘤防治研究, 2019, 46(9): 856-860. DOI: 10.3971/j.issn.1000-8578.2019.19.0634
MAO Yun, XUE Peng, LI Linlu, XU Pengpeng, ZHU Shijie. Advances in Molecular Mechanisms of Early Bone Metastasis[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 856-860. DOI: 10.3971/j.issn.1000-8578.2019.19.0634
Citation: MAO Yun, XUE Peng, LI Linlu, XU Pengpeng, ZHU Shijie. Advances in Molecular Mechanisms of Early Bone Metastasis[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 856-860. DOI: 10.3971/j.issn.1000-8578.2019.19.0634

早期骨转移分子机制的研究进展

基金项目: 

国家自然科学基金 81573915

详细信息
    作者简介:

    毛昀(1992-),男,博士在读,主要从事恶性肿瘤的中西医结合治疗研究

    通讯作者:

    朱世杰,E-mail:13381058340@163.com

  • 中图分类号: R738.1

Advances in Molecular Mechanisms of Early Bone Metastasis

More Information
  • 摘要:

    骨转移是恶性肿瘤常见并发症,其中乳腺癌和肺癌多为溶骨性骨转移,具有临床发病率高的特点,其临床表现为疼痛、高钙血症、病理性骨折等,严重影响患者生活质量以及缩短生存时间。然而,肿瘤细胞转移到骨微环境的机制尚未完全明确,最新研究提示骨转移出现临床症状前,肿瘤细胞和骨微环境之间存在相关调控的作用。本文从肿瘤细胞和骨微环境的特异性、肿瘤细胞与骨细胞之间的相互调控等方面进行综述,以期指导临床用药。

     

    Abstract:

    Bone metastasis is a common complication of malignant tumors. Breast cancer and lung cancer are mostly with osteolytic bone metastases. The clinical manifestations of bone metastasis are pain, hypercalcemia, pathological fractures, etc., seriously affecting the quality of life of patients and shorten the survival time. However, the mechanism of how tumor cells metastasize into bone microenvironment is not completely clear. The latest studies suggest that before the clinical symptoms of bone metastasis, there is a regulatory role between malignant tumor cell and bone microenvironment. In this paper, we review the specificity of tumor cells and bone microenvironment, and the mutual regulation between tumor cells and bone cells to guide clinical medication.

     

  • 宫颈小细胞神经内分泌癌(small cell neuroendocrine carcinoma, SCNEC)是一种较为罕见的原发于宫颈的神经内分泌性肿瘤,约占宫颈恶性肿瘤的1%~2%[1-2]。在各种类型的宫颈癌中,SCNEC是一种侵袭性强的病理类型[3-8]。但因为该类病例较少,目前尚无规范化的治疗。本研究对101例宫颈小细胞神经内分泌癌患者的临床病理资料及生存状况进行分析,旨在探讨SCNEC合理的治疗方案及预后相关因素,为此类患者治疗及预后判断提供临床依据。

    收集2007年1月—2018年6月在江西省妇幼保健院确诊并完成治疗的101例宫颈小细胞神经内分泌癌患者作为研究对象。患者确诊年龄25~73岁,中位年龄44岁,其中41~50岁者有40例。宫颈局部肿瘤直径 > 4 cm患者34例,≤4 cm患者67例。患者临床资料及年龄分布见表 1。所有患者均知情同意。

    表  1  101例SCNEC患者临床病理特征
    Table  1  Clinical and pathological features of 101 SCNEC patients
    下载: 导出CSV 
    | 显示表格

    (1)所有患者接受治疗前均经江西省妇幼保健院病理确诊为宫颈小细胞神经内分泌癌;(2)临床分期盆腔检查均经三位以上有经验的妇科肿瘤专业医师检查确定;(3)治疗前均未接受任何干预性治疗,且初始治疗及后续治疗均在同一机构完成;(4)纳入研究的患者治疗模式均为手术+术后补充放化疗(下文简称手术治疗组)或根治性放化疗,且按计划完成全部治疗;(5)全部患者术后病理检查均在同一医院完成;(6)建立了完整的病历档案,并持续随访,具备完整的住院及门诊复查病历资料。

    72例手术治疗患者手术方式为广泛子宫切除+盆腔淋巴结切除术±腹主动脉旁淋巴结切除术,其中47例行腹主动脉旁淋巴结切除术。69例行双附件切除,其余3例保留一侧卵巢且进行了保留卵巢的组织活检。

    放疗包括体外照射+腔内后装治疗,体外照射采用全盆腔体外照射+中央遮盖体外照射。体外照射剂量:全盆照射肿瘤剂量30~40 Gy,中央遮盖照射剂量15~25 Gy,放疗频率及强度:每周5次,每次分割剂量2 Gy。腔内后装采用高剂量率后装治疗设备,放射源为铱192。放疗剂量参照点A点累积剂量要求60~70 Gy;B点累积剂量要求54~56 Gy。放疗期间均给予铂类为基础的同步化疗。

    通过电话或门诊复查方式进行随访,截止时间为2018年9月。

    采用GraphPad7.0统计软件对不同组间患者生存率进行显著性比较。生存分析采用Kaplan-Meier法,生存率的比较采用Log rank检验。P < 0.05为差异有统计学意义。

    72例手术组患者中,2例失访,19例死亡,51例生存。19例死亡患者生存时间1~63月,中位生存时间19月,平均生存时间18.5月。51例生存的患者中,生存时间1~139月,中位生存时间39月,平均生存时间47.3月。随访5年以上共33例,生存20例,五年生存率60.6%。

    29例根治性放化疗患者中,随访5年以上20例,其中2例失访,死亡15例,生存3例,五年生存率15%。生存时间1~75月,中位生存时间21月。3例生存患者年龄分别为40岁、41岁、46岁,临床分期均为ⅡB期,病理均为单纯的宫颈小细胞神经内分泌癌,化疗方案均为多西他赛+卡铂,放疗给予根治性同步放化疗。ⅠB1期~ⅡA期手术治疗组患者生存率优于ⅡB期~Ⅳ期期根治性放化疗组患者(P=0.0025),见图 1

    图  1  手术组与放化疗组患者生存曲线图
    Figure  1  Survival curves of Surgery and CCRT groups

    72例接受手术治疗的患者均行宫颈癌根治术+盆腔淋巴结切除术,47例行腹主动脉旁淋巴结切除术,其中1例(1/47, 2.12%)腹主动脉旁淋巴结阳性。27例(27/72, 37.5%)盆腔淋巴结阳性。淋巴结阳性与阴性患者生存曲线比较差异有统计学意义,淋巴结阴性患者生存优于淋巴结阳性患者(P=0.0004),见图 2

    图  2  盆腔淋巴结阳性和阴性手术患者生存曲线
    Figure  2  Survival curves of surgical SCNEC patients with pelvic lymph node positive and negative

    72例手术治疗的患者中,按病理类型分,单纯SCNEC例41例,混合其他病理类型者31例,其中混合有腺癌19例,鳞癌9例,腺鳞癌3例。混合型与单纯型SCNEC生存曲线比较差异无统计学意义(P=0.0546),见图 3

    图  3  单纯型与混合型SCNEC生存曲线
    Figure  3  Survival curves of pure and mixed type SCNEC patients

    WHO分类将宫颈神经内分泌肿瘤分为低级别神经内分泌肿瘤(包括类癌及非典型类癌)和高级别神经内分泌肿瘤(包括小细胞神经内分泌癌和大细胞神经内分泌癌)。目前无公认的、规范有效的治疗方案,对于宫颈神经内分泌肿瘤多参照常见宫颈癌的分期治疗原则,主张手术、化疗和放疗的综合性治疗,但其治疗是否应有别于宫颈鳞癌需要更大样本、多中心的研究。美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)指南也将SCNEC列入特殊类型宫颈癌。

    关于SCNEC患者生存率及预后方面的研究,Ishikawa等的一项多中心研究显示淋巴血管间隙受侵是患者的总生存率及无进展生存率的重要预后因素,盆腔淋巴结转移是DFS的重要预后影响因素[9]。Cohen等研究发现Ⅰ~ⅡA、ⅡB~ⅣA、ⅣB期5年生存率分别为36.8%、9.8%和0[10],本研究结果显示临床分期与预后密切相关,各期别5年生存率均较以往文献报道略高。FIGO分期是较为公认的影响患者预后的最重要的独立危险因素[11-12]。由于SCNEC侵袭性强,易发生远处转移,有学者认为早期SCNEC患者手术联合化疗的预后优于单纯手术者[13-14]。本研究中ⅠB~ⅡA期患者均采用手术+放化疗综合治疗,5年总生存率60%以上,提示手术联合术后放化疗对此类患者疗效较好。

    宫颈小细胞神经内分泌癌早期容易发生转移,但从72例早期患者手术情况发现,仅1例(1.39%)发生卵巢转移。提示对于存在生育要求的年轻SCNEC患者,是否一定要行卵巢切除有待进一步研究证实。研究证实,SCNEC好发转移器官为肺、脑、肝,预后差[15-16]

    此外,几乎所有文献均支持此类肿瘤早期即容易发生远处转移,本研究资料中,死亡病例主要病因为肺转移、全身转移,临床观察也支持上述观点。关于淋巴结转移,有研究认为,即使是早期的SCNEC患者,淋巴结转移也非常普遍,淋巴结转移率为41.6%~57%[17]。本研究中,72例早期SCNEC患者手术后病理提示淋巴结转移22例,转移率37.5%,与文献报道接近,但是对于腹主动脉旁淋巴结,72例患者中47例患者行腹主动脉旁淋巴结活检或切除,仅1例发生腹主动脉旁淋巴结转移,转移率仅为2.13%,远低于盆腔淋巴结转移率。这一研究结果提示我们,即便是早期SCNEC患者,化疗对于控制转移也有重要的临床意义。

    与以往报道相比,本研究中手术患者术后均补充了放化疗,且均达到6个疗程,其中49例采用紫杉醇+铂类化疗方案,23例采用顺铂+环磷酰胺+表阿霉素化疗方案,提示手术后放化疗的必要性。

    总之,宫颈小细胞神经内分泌癌发病率低、恶性程度高、易发生远处转移和复发,患者预后差、死亡率高、有独特的病理特征,诊断主要依据病理诊断和免疫组织化学结果可提高其诊断的准确率。由于研究样本少,尚需大量的临床资料及多中心研究探索最佳早期诊断及治疗的方法。

    作者贡献
    毛昀:论文设计、撰写及修改
    薛鹏:论文撰写、文献查阅
    李林潞、徐芃芃:文献查阅
    朱世杰:论文设计、审阅
  • 图  1   恶性肿瘤骨转移机制图

    Figure  1   Mechanism of malignant tumor bone metastasis

  • [1]

    Bonetto R, Tallet A, Mélot A, et al. The management of bone metastasis[J]. Bull Cancer, 2017, 104(6): 585-592. doi: 10.1016/j.bulcan.2017.02.004

    [2]

    Karlsson T, Sundar R, Widmark A, et al. Osteoblast-derived factors promote metastatic potential in human prostate cancer cells, in part via non-canonical transforming growth factor beta (tgfbeta) signaling[J]. Prostate, 2018, 78(6): 446-456. doi: 10.1002/pros.v78.6

    [3]

    Maurizi A, Rucci N. The osteoclast in bone metastasis: Player and target[J]. Cancers (Basel), 2018, 10(7). pii: E218.

    [4]

    Xiao W, Zheng S, Yang A, et al. Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: A population-based study[J]. Cancer Manag Res, 2018, 10: 5329-5338. doi: 10.2147/CMAR

    [5]

    Joeckel E, Haber T, Prawitt D, et al. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor[J]. Mol Cancer, 2014, 13: 42. doi: 10.1186/1476-4598-13-42

    [6]

    Wang Y, Xie Y, Oupický D. Potential of CXCR4/CXCL12 chemokine axis in cancer drug delivery[J]. Curr Pharmacol Rep, 2016, 2(1): 1-10. doi: 10.1007/s40495-015-0044-8

    [7]

    Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation[J]. Histochem Cell Biol, 2018, 149(4): 313-323. doi: 10.1007/s00418-018-1640-6

    [8]

    Tan CC, Li GX, Tan LD, et al. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/Runx2 signaling pathway induction[J]. Oncotarget, 2016, 7(48): 79688-79705. http://europepmc.org/articles/PMC5346745/

    [9]

    Xiang L, Gilkes DM. The contribution of the immune system in bone metastasis pathogenesis[J]. Int J Mol Sci, 2019, 20(4): pii: E999.

    [10]

    Zhao E, Wang L, Dai J, et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer[J]. Oncoimmunology, 2012, 1(2): 152-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4161/onci.1.2.18480

    [11]

    Monteiro AC, Leal AC, Goncalves-Silva T, et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer[J]. PLoS One, 2013, 8(7): e68171. doi: 10.1371/journal.pone.0068171

    [12]

    Sawant A, Hensel JA, Chanda D, et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells[J]. J Immunol, 2012, 189(9): 4258-4265. doi: 10.4049/jimmunol.1101855

    [13]

    Sawant A, Deshane J, Jules J, et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer[J]. Cancer Res, 2013, 73(2): 672-682. doi: 10.1158/0008-5472.CAN-12-2202

    [14]

    Schernberg A, Blanchard P, Chargari C, et al. Neutrophils, a candidate biomarker and target for radiation therapy?[J]. Acta Oncol, 2017, 56(11): 1522-1530. doi: 10.1080/0284186X.2017.1348623

    [15]

    Graham N, Qian BZ. Mesenchymal stromal cells: Emerging roles in bone metastasis[J]. Int J Mol Sci, 2018, 19(4). pii: E1121.

    [16]

    Luo G, He Y, Yu X. Bone marrow adipocyte: An intimate partner with tumor cells in bone metastasis[J]. Front Endocrinol(Lausanne), 2018, 9: 339. doi: 10.3389/fendo.2018.00339

    [17]

    Swami S, Johnson J, Bettinson LA, et al. Prevention of breast cancer skeletal metastases with parathyroid hormone[J]. JCI Insight, 2017, 2(17). pii: 90874.

    [18]

    LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: Origins, functions and translational impact[J]. Dis Model Mech, 2018, 11(4). pii: dmm029447.

    [19]

    Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals[J]. Nature, 2014, 508(7495): 269-273. doi: 10.1038/nature13034

    [20]

    Hiraga T. Hypoxic microenvironment and metastatic bone disease[J]. Int J Mol Sci, 2018, 19(11). pii: E3523.

    [21]

    Devignes CS, Aslan Y, Brenot A, et al. Hif signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice[J]. Proc Natl Acad Sci USA, 2018, 115(5): E992-E1001. doi: 10.1073/pnas.1718009115

    [22]

    Avnet S, Di Pompo G, Lemma S, et al. Cause and effect of microenvironmental acidosis on bone metastases[J]. Cancer Metastasis Rev, 2019, 38(1-2): 133-147. doi: 10.1007/s10555-019-09790-9

    [23]

    Yuan FL, Xu MH, Li X, et al. The roles of acidosis in osteoclast biology[J]. Front Physiol, 2016, 7: 222. http://europepmc.org/articles/PMC4919343/

    [24]

    Arnett TR. Acidosis, hypoxia and bone[J]. Arch Biochem Biophys, 2010, 503(1): 103-9. doi: 10.1016/j.abb.2010.07.021

    [25]

    Avnet S, Di Pompo G, Chano T, et al. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via nf-kappab activation[J]. Int J Cancer, 2017, 140(6): 1331-1345. doi: 10.1002/ijc.30540

    [26]

    Shupp AB, Kolb AD, Mukhopadhyay D, et al. Cancer metastases to bone: Concepts, mechanisms, and interactions with bone osteoblasts[J]. Cancers(Basel), 2018, 10(6). pii: E182.

    [27]

    Chu T, Teng J, Jiang L, et al. Lung cancer-derived dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation[J]. Biochem Biophys Res Commun, 2014, 443(3): 962-968. doi: 10.1016/j.bbrc.2013.12.076

    [28]

    Qiao R, Zhong R, Chang Q, et al. Serum dickkopf-1 as a clinical and prognostic factor in non-small cell lung cancer patients with bone metastases[J]. Oncotarget, 2017, 8(45): 79469-79479. http://pubmedcentralcanada.ca/pmcc/articles/PMC5668059/

    [29]

    Kimura Y, Matsugaki A, Sekita A, et al. Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis[J]. Sci Rep, 2017, 7: 44824. doi: 10.1038/srep44824

    [30]

    Lemma S, Di PG, Porporato PE, et al. Mda-mb-231 breast cancer cells fuel osteoclast metabolism and activity: A new rationale for the pathogenesis of osteolytic bone metastases[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3254-3264. doi: 10.1016/j.bbadis.2017.08.030

    [31]

    McCoy EM, Hong H, Pruitt HC, et al. Il-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells[J]. BMC Cancer, 2013, 13: 16. doi: 10.1186/1471-2407-13-16

    [32]

    Engblom C, Pfirschke C, Zilionis R, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils[J]. Science, 2017, 358(6367). pii: eaa15081.

    [33]

    Wang H, Tian L, Liu J, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability[J]. Cancer Cell, 2018, 34(5): 823-839. doi: 10.1016/j.ccell.2018.10.002

    [34]

    Lawson MA, McDonald MM, Kovacic N, et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche[J]. Nat Commun, 2015, 6: 8983. doi: 10.1038/ncomms9983

    [35]

    Bodenstine TM, Beck BH, Cook LM, et al. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model[J]. Chin J Cancer, 2011, 30(3): 189-196. doi: 10.5732/cjc.010.10582

    [36]

    Wang H, Yu C, Gao X, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells[J]. Cancer Cell, 2015, 27(2): 193-210. doi: 10.1016/j.ccell.2014.11.017

    [37]

    Bussard KM, Venzon DJ, Mastro AM. Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer[J]. J Cell Biochem, 2010, 111(5): 1138-1148. doi: 10.1002/jcb.22799

图(1)
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  356
  • PDF下载量:  1113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-07-04
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2019-09-24

目录

/

返回文章
返回
x 关闭 永久关闭