高级搜索

肠道菌群与免疫检查点抑制剂研究进展

但慧敏, 周永宁, 关泉林

但慧敏, 周永宁, 关泉林. 肠道菌群与免疫检查点抑制剂研究进展[J]. 肿瘤防治研究, 2019, 46(11): 1026-1030. DOI: 10.3971/j.issn.1000-8578.2019.19.0311
引用本文: 但慧敏, 周永宁, 关泉林. 肠道菌群与免疫检查点抑制剂研究进展[J]. 肿瘤防治研究, 2019, 46(11): 1026-1030. DOI: 10.3971/j.issn.1000-8578.2019.19.0311
DAN Huimin, ZHOU Yongning, GUAN Quanlin. Research Progress of Intestinal Microbiota and Immune Checkpoint Inhibitors[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 1026-1030. DOI: 10.3971/j.issn.1000-8578.2019.19.0311
Citation: DAN Huimin, ZHOU Yongning, GUAN Quanlin. Research Progress of Intestinal Microbiota and Immune Checkpoint Inhibitors[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 1026-1030. DOI: 10.3971/j.issn.1000-8578.2019.19.0311

肠道菌群与免疫检查点抑制剂研究进展

基金项目: 

国家重点研发计划 2017YFC0908300

详细信息
    作者简介:

    但慧敏(1992-),女,硕士在读,主要从事胃肠肿瘤相关研究

    通讯作者:

    关泉林(1968-),男,教授,主要从事胃癌相关基础和临床研究,E-mail: guanquanlin@163.com

  • 中图分类号: R730.231;R730.51

Research Progress of Intestinal Microbiota and Immune Checkpoint Inhibitors

More Information
  • 摘要:

    肠道菌群能够通过局部或全身炎性反应影响肿瘤的发生、发展以及治疗。目前,肠道菌群在肿瘤治疗中的作用越来越显著,研究发现,肠道菌群影响实体瘤免疫检查点抑制剂治疗反应,但造成个体间免疫反应差异的机制尚不清楚。有学者认为,肠道菌群在其中可能发挥潜在的调节作用。例如嗜黏蛋白-艾克曼菌、乳酸杆菌及双歧杆菌等都具有调节肿瘤细胞及免疫细胞功能,并促进多种细胞因子的产生,进而提高免疫检查点抑制剂治疗效果。因此,本文就肠道菌群对肿瘤细胞及免疫细胞的影响和目前肠道菌群与免疫检查点抑制剂的研究现状做一阐述。

     

    Abstract:

    Intestinal microbiota are able to influence tumor initiation, progression, as well as therapy through local or systemic inflammation. Currently, the role of intestinal microbiota in cancer treatment is becoming increasingly significant, and investigators have found that intestinal microbiota affect the responsiveness of solid tumor to immune checkpoint inhibitor treatment, but the mechanisms responsible for inter-individual differences in immune responses are unclear. Some scholars believe that gut microbiota may play a potential regulatory role in it, such as Akkermansia muciniphila, lactobacillus and bifidobacterium can regulate the function of tumor cells and immune cells, and promote the production of a variety of cytokines, thereby improving the therapeutic effect of immune checkpoint inhibitors. Therefore, in this paper, the effects of gut microbiota on tumor cells and immune cells, as well as the current status of research on gut microbiota and immune checkpoint inhibitors are described.

     

  • 目前,食管癌的发病率和死亡率均较高(占恶性肿瘤总发病率的4.2%,总死亡率的6.6%)[1],且我国食管癌的发病率和死亡率均高于全球平均水平[2],放疗是食管癌重要的治疗手段之一,而放射性肺炎(radiation pneumonitis, RP)作为胸部放疗最常见的不良反应,短期内可引起咳嗽、气短、发热等症状,长期可引起肺纤维化、肺功能损伤,影响患者的生活质量,严重时甚至导致患者死亡,且放射性肺炎会限制临床医生给予的处方剂量,从而影响治疗效果和患者预后。RP的发病率也较高,有学者统计发现食管癌患者接受放疗后发生≥2级RP的风险约为22%[3],而老年食管患者接受放疗后发生RP的风险可高达52.4%[4],这提示老年食管癌患者在接受放射治疗时需要更多重视。为避免RP发生,剂量体积直方图(dose-volume histogram, DVH)常用于评估放疗计划,其中肺平均剂量(mean lung dose, MLD)和V20(接受≥20Gy肺体积占总肺体积百分比)常作为约束指标,但效果欠佳[5],且目前应用DVH参数预测放疗后发生RP的研究尚无统一定论[6-8]。因此,本研究分析来自不同中心的老年食管癌患者的剂量体积参数与三维适形放疗后发生≥2级放射性肺炎的相关性,旨在为预防老年患者发生放射性肺炎提供帮助。

    本研究为回顾性分析,选择2018年1月至2020年1月在东南大学附属中大医院以及江苏省泰州市靖江市人民医院接受三维适形放疗的食管癌患者,收集资料包括:(1)临床特征:性别、年龄、一般体力状况ECOG评分、吸烟史、化疗史。(2)剂量体积参数:V5、V10、V20、V30、MLD。患者放疗开始及放疗期间每两周进行随访,放疗结束后每月进行随访,随访内容包括采集病史、体格检查及胸部CT平扫检查,随访时间为3月。纳入标准:(1)病理明确诊断为食管鳞癌;(2)年龄:60~80岁;(4)PS评分:ECOG 0~2分;(5)放疗期间及结束后完整接受随访(3月),包括病史采集、查体及胸部CT平扫。排除标准:合并肺部基础疾病:包括肺间质性疾病、慢性阻塞性肺疾病等。共收集符合标准的患者250例,其中男151例(60.4%)、女99例(39.6%),平均年龄71岁;东南大学附属中大医院病例110例(44%),靖江市人民医院140例(56%)。

    所有患者均接受三维适形放疗,东南大学附属中大医院应用热塑模固定,定位CT以5 mm层厚扫描,包括中下颈部和全胸部及上腹部,传输图像至Release 4.3.1治疗系统,放疗使用西门子Primus-m直线加速器。靖江市人民医院应用真空垫体模固定,定位CT以3 mm层厚扫描,包括中下颈部和全胸部及上腹部,传输图像至Eclipse 8.6治疗计划系统,放疗使用Varian23 EX直线加速器。食管癌PTV为CTV外扩5~10 mm,根治性放疗处方剂量为60 Gy,术后辅助放疗处方剂量50~60 Gy,均应用2 Gy/F常规分割,以98%等剂量线包绕95%以上计划靶体积,正常组织限量:脊髓剂量 < 45 Gy;心脏V30 < 40%,V40 < 30%;双肺平均剂量 < 20 Gy,V20 < 30%,V30 < 20%,同步化疗时双肺V20限制 < 28%。250例老年食管癌患者中,113例食管鳞癌患者接受了小剂量顺铂/奈达铂同步放化疗(45.2%)。

    放射性肺炎诊断标准采用肿瘤放射治疗学第5版标准:(1)既往6月内有肺受照射病史;(2)CT影像学改变主要局限在照射区域内,病变与正常肺组织的解剖结构不符;(3)多有咳嗽、气短、发热等临床症状;(4)排除能引起类似症状的其他因素[9]。放射性肺炎的分级标准采用不良事件通用术语标准第5版分为:1级:无症状,仅临床或影像学所见,无需治疗;2级:有症状,影响应用工具的日常活动,需治疗;3级:重度症状,影响自理性活动,需吸氧;4级:危及生命的呼吸障碍,需气管切开或插管;5级:死亡[10],由至少两名放疗专科医生评估分级。

    采用SPSS23.0软件对数据进行统计分析,卡方检验分析放射性肺炎组与非放射性肺炎组患者临床特征的差异;单因素Logistic回归分析DVH参数中与发生≥2级RP相关的因素;将单因素分析中有统计学意义的DVH参数纳入多因素Logistic回归,分析与发生≥2级RP独立相关的因素;应用ROC曲线分析发生≥2级RP独立相关的DVH参数的AUC值及最佳分界值,取约登指数最大时的值。样本量采用EPV法(events per variable)确定。P < 0.05为差异有统计学意义。

    将放射性肺炎组与非放射肺炎组患者的临床特征进行卡方检验,两组间性别(P=0.561)、平均年龄(P=0.948)、ECOG评分(P=0.515)、吸烟史(P=0.604)、化疗史(P=0.849)差异均无统计学意义,见表 1

    表  1  250例老年食管癌患者的临床特征及卡方检验结果
    Table  1  Clinical features and chi-square test results of 250 elderly patients with esophageal cancer
    下载: 导出CSV 
    | 显示表格

    Logistic单因素分析与发生≥2级放射性肺炎相关的剂量体积参数,结果提示双肺V5(P < 0.05)、V10(P < 0.05)、V20(P < 0.05)、V30(P < 0.05)及MLD(P < 0.05)均是老年食管癌患者三维适形放疗后发生≥2级RP的相关因素,见表 2

    表  2  250例老年食管癌患者发生≥2级RP的Logistic单因素分析
    Table  2  Logistic univariate analysis for ≥grade 2 RP in 250 elderly patients with esophageal cancer
    下载: 导出CSV 
    | 显示表格

    将单因素分析结果中与RP有显著相关性的DVH参数:双肺V5、V10、V20、V30、MLD进行Logistic多因素分析,结果显示仅双肺V5(P=0.016)、V20(P=0.005)有统计学意义,提示双肺V5、V20是老年食管癌患者三维适形放疗后发生≥2级RP的独立相关因素;双肺V10(P=0.900)、V30(P=0.114)及MLD(P=0.441)与发生≥2级RP有相关性,但不是发生≥2级RP的独立相关因素,见表 3

    表  3  250例老年食管癌患者发生≥2级RP的Logistic多因素分析
    Table  3  Logistic multivariate analysis for ≥grade 2 RP in 250 elderly patients with esophageal cancer
    下载: 导出CSV 
    | 显示表格

    应用ROC曲线分析V5及V20预测≥2级放射性肺炎的效果及最佳分界值,见图 1。V5的ROC曲线下面积为0.851,95%CI: 0.801~0.902;V20的ROC曲线下面积为0.899,95%CI: 0.850~0.949,见表 4;V5预测≥2级RP的最佳分界值为53.90%,敏感度0.92,特异性0.66,约登指数为0.58;V20的最佳分界值为23.15%,敏感度为0.74,特异性为0.91,约登指数为0.66,见表 5

    图  1  250例老年食管癌患者发生≥2级RP的ROC曲线分析
    Figure  1  ROC curve analysis for ≥grade 2 RP in 250 elderly patients with esophageal cancer
    表  4  双肺V5和V20的ROC曲线下面积
    Table  4  Area under ROC curve of bilateral pulmonary V5 and V20
    下载: 导出CSV 
    | 显示表格
    表  5  双肺V5和V20的最佳分界值
    Table  5  The best cut-off value of bilateral pulmonary V5 and V20
    下载: 导出CSV 
    | 显示表格

    放射性肺炎作为食管癌放疗较常见的并发症之一,是多种细胞和分子相互作用,引起大量成纤维细胞积累、增殖和分化,使细胞外基质沉积过多,最终导致肺纤维化的病理生理过程[11],但是RP发生的具体机制仍未明确,因此传统观点仍将剂量体积参数作为评估放疗计划的主要因素[12],以减少RP的发病风险,但目前尚无统一定论[13];临床工作中则应用V20 < 30%、MLD < 20~23Gy以规避RP的发生,但有研究表明效果欠佳[14];而老年患者的肺功能相对减弱,承受损伤的能力较差[15],在接受放射治疗时需要格外重视,因此本研究主要分析老年食管患者三维适形放疗后与≥2级RP相关的剂量体积参数,以便为控制、预防老年患者发生RP提供帮助。

    本研究单因素分析表明双肺V5、V10、V20、V30及MLD均是老年食管癌放疗后发生≥2级RP的相关因素,提示DVH参数与RP发生紧密相关,与多数学者观点相符[16-18]。多因素分析结果示双肺V20是≥2级RP的独立相关因素,与多数学者的观点相符[19-21],且目前临床工作评估放疗计划时常约束双肺V20(低于28%~30%)以规避RP,但本研究则发现双肺V20应当 < 23.2%以规避≥2级RP发生,而Tonison的系统回顾也得出了类似的结论,认为应当将V20控制在23%以下[22]。这表明对于老年患者,剂量体积参数的控制应当更加严格,这可能与老年人的基础肺功能较差、肺生理结构改变有关[23]。另本研究还发现MLD与RP具有相关性,但不是RP的独立相关因素,部分关于食管癌患者发生RP的研究也得出了类似结论[24-26],提示对于食管癌患者,MLD预测RP发生的价值还有待进一步探讨。

    本研究多因素分析还发现双肺V5也与≥2级RP独立相关,提示低剂量体积参数在预测RP发生方面具有重要价值。沈文斌等随访了222例接受三维适形放疗的食管癌患者,其中22.1%的患者发生了≥2级RP,回归分析发现V5和V20是RP的重要预测因素[27];Zhao等对68例食管癌患者的回顾分析发现,低剂量体积参数在预测RP方面更为重要[28];杜峰等将247例食管癌患者的V5~V40、MLD、GTV及吸烟指数等临床特征进行多因素回归分析,发现双肺V5是≥1级RP及≥3级RP的独立相关因素[29]。这些研究结果均认同了低剂量体积参数在预测RP方面的价值,但也有部分学者提出了不同观点:Zhao等通过对68例患者的回顾分析认为V30是RP的独立相关因素,而非V5和V20[28],但所研究的样本量较少;姚波等针对食管癌及肺癌患者的一项回顾性研究也发现V30与RP独立相关[30],但其研究样本量少(33例),并且在评估危及器官受量时,肺癌患者的双肺体积需扣除GTV后评估,而食管癌患者不存在此问题,因此将肺癌与食管癌患者的肺部DVH参数混合分析可能会对研究结果造成影响。

    本研究则应用EPV法确定样本量,共收集了250例食管癌患者的数据,样本量较上述研究更多,并针对分析了5项与RP相关的DVH参数;且样本来源于不同等级的医疗中心,更具有代表性;且主要针对肺功能更为脆弱、更易发生RP的老年患者,具有临床意义。

    综上所述,双肺V5和V20是老年食管癌患者三维适形放疗后发生≥2级放射性肺炎的独立相关因素;对于老年患者,剂量体积参数的约束应当更加严格,应当控制双肺V5 < 53.9%,V20 < 23.2%以规避≥2级放射性肺炎发生。

    作者贡献:
    但慧敏:文献的搜集整理及部分稿件的撰写
    周永宁:部分文稿撰写、整理及修改
    关泉林:选题和文章架构的确定及文稿的修改
  • [1]

    Gopalakrishnan V, Helmink BA, Spencer CN, et al. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy[J]. Cancer Cell, 2018, 33(4): 570-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=beadac28ef5fea6a2f9df54c191e3840

    [2]

    Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease[J]. Microbiome, 2017, 5(1): 80. doi: 10.1186/s40168-017-0296-0

    [3]

    Zmora N, Zeevi D, Korem T, et al. Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease[J]. Cell Host Microbe, 2016, 19(1): 12-20. doi: 10.1016/j.chom.2015.12.016

    [4]

    Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy[J]. Nat Rev Cancer, 2017, 17(5): 271-285. http://d.old.wanfangdata.com.cn/Periodical/zgylxydl201611011

    [5]

    Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body[J]. PLoS Biol, 2016, 14(8):e1002533. doi: 10.1371/journal.pbio.1002533

    [6]

    Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbe3322e559d609f96e8c31ec0b64e07

    [7]

    Zitvogel L, Ma Y, Raoult D, et al. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies[J]. Science, 2018, 359(6382): 1366-1370. http://europepmc.org/abstract/MED/29567708

    [8]

    Santoni M, Piva F, Conti A, et al. Re: Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors[J]. Eur Urol, 2018, 74(4): 521-522. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201011007

    [9]

    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. doi: 10.1038/nature08821

    [10]

    Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-8803. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3205659

    [11]

    Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products[J]. Nat Rev Microbiol, 2017, 15(8): 465-478. doi: 10.1038/nrmicro.2017.44

    [12]

    Mastromarino AJ, Reddy BS, Wynder EL. Fecal profiles of anaerobic microflora of large bowel cancer patients and patients with nonhereditary large bowel polyps[J]. Cancer Res, 1978, 38(12): 4458-4462. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM719630

    [13]

    Mizutani T, Mitsuoka T. Inhibitory effect of some intestinal bacteria on liver tumorigenesis in gnotobiotic C3H/He male mice[J]. Cancer Lett, 1980, 11(2): 89-95. doi: 10.1016/0304-3835(80)90098-1

    [14]

    Ponzetto A, Figura N. Colon Cancer Risk and VacA Toxin of Helicobacter pylori[J]. Gastroenterology, 2019, 156(8): 2356.

    [15]

    Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. Int J Syst Evol Microbiol, 2004, 54(Pt 5): 1469-1476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=166227c233729df42b6ea312c7e879ed

    [16]

    Shin J, Noh JR, Chang DH, et al. Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion[J]. Front Microbiol, 2019, 10: 1137.

    [17]

    Greer RL, Dong X, Moraes AC, et al. Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism[J]. Nat Commun, 2016, 7: 13329. doi: 10.1038/ncomms13329

    [18]

    Hinnebusch BF, Meng S, Wu JT, et al. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation[J]. J Nutr, 2002, 132(5): 1012-1017. doi: 10.1038/sj.ijo.0801981

    [19]

    Tang Y, Chen Y, Jiang H, et al. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer[J]. Int J Cancer, 2011, 128(4): 847-856. doi: 10.1002/ijc.25638

    [20]

    Abedin-Do A, Taherian-Esfahani Z, Ghafouri-Fard S, et al. Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells[J]. Immunotherapy, 2015, 7(12): 1307-1329. doi: 10.2217/imt.15.92

    [21]

    Hwang JW, Baek YM, Yang KE, et al. Lactobacillus casei extract induces apoptosis in gastric cancer by inhibiting NF-kappaB and mTOR-mediated signaling[J]. Integr Cancer Ther, 2013, 12(2): 165-173.

    [22]

    Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, et al. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells[J]. PLoS One, 2016, 11(2): e147960. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004636120

    [23]

    Yang C, Fujita Y, Ren Q, et al. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice[J]. Sci Rep, 2017, 7: 45942. doi: 10.1177/1534735412442380

    [24]

    Nowak A, Paliwoda A, Blasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives[J]. Crit Rev Food Sci Nutr, 2018: 1-12. [Epub ahead of print] http://cn.bing.com/academic/profile?id=68a7770f211074fae76265a9f321335c&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=915c9921f8be37c7fad5d426e96e296f

    [26]

    Robles-Vera I, Toral M, de la Visitacion N, et al. The Probiotic Lactobacillus fermentum Prevents Dysbiosis and Vascular Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric Oxide Blockade[J]. Mol Nutr Food Res, 2018, 62(19):e1800298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/mnfr.201800298

    [27]

    Lee DK, Jang S, Kim MJ, et al. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines[J]. BMC Cancer, 2008, 8: 310. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0a60078897e4e9bff4165e791bbfa52a

    [28]

    Oleson BJ, Broniowska KA, Yeo CT, et al. The role of metabolic flexibility in the regulation of the DNA damage response by nitric oxide[J]. Mol Cell Biol, 2019. pii: MCB. 00153-19.

    [29]

    Zhang X, Jin L, Tian Z, et al. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma[J]. Cancer Sci, 2019, 110(3): 1054-1063. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/cas.13945

    [30]

    Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nat Rev Cancer, 2018, 18(12): 744-757. http://cn.bing.com/academic/profile?id=ca3e51c4b368908b3ec3a350b7a5b3a2&encoded=0&v=paper_preview&mkt=zh-cn

    [31]

    Huynh J, Chand A, Gough D, et al. Therapeutically exploiting STAT3 activity in cancer-using tissue repair as a road map[J]. Nat Rev Cancer, 2019, 19(2): 82-96. http://cn.bing.com/academic/profile?id=8463658ae73647b1b3e5cbcd7eb9bef2&encoded=0&v=paper_preview&mkt=zh-cn

    [32]

    Barilla RM, Diskin B, Caso RC, et al. Specialized dendritic cells induce tumor-promoting IL-10(+)IL-17(+) FoxP3(neg) regulatory CD4(+) T cells in pancreatic carcinoma[J]. Nat Commun, 2019, 10(1): 1424. http://cn.bing.com/academic/profile?id=a05821bfd9fc29dc4423b280b24c51b3&encoded=0&v=paper_preview&mkt=zh-cn

    [33]

    Miller SJ, Zaloga GP, Hoggatt AM, et al. Short-chain fatty acids modulate gene expression for vascular endothelial cell adhesion molecules[J]. Nutrition, 2005, 21(6): 740-748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4305d2b1cde0cd470ee8dd69239034e3

    [34]

    Rong J, Liu S, Hu C, et al. Single probiotic supplement suppresses colitis-associated colorectal tumorigenesis by modulating inflammatory development and microbial homeostasis[J]. J Gastroenterol Hepatol, 2019, 34(7): 1182-1192. http://cn.bing.com/academic/profile?id=2d3b4f31007f05b6400e2d34b90fc5ed&encoded=0&v=paper_preview&mkt=zh-cn

    [35]

    Rong Y, Dong Z, Hong Z, et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8(+) T cell response and better prognosis in HBV-related hepatocellular carcinoma[J]. Exp Cell Res, 2017, 358(2): 352-359. http://www.ncbi.nlm.nih.gov/pubmed/28694023

    [36] 张宝元, 马晓红, 刘震, 等.双歧杆菌及其WPG对S180荷瘤小鼠免疫调节和抑瘤作用研究[J].中国微生态学杂志, 2001, 13(1): 8-10. http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz200101004

    Zhang BY, Ma XH, Liu Z, et al. Study on immunomodulation and antitumor activity of Bifidobacterium and its cel wall preparation in S180 tumor mice[J]. Zhongguo Wei Sheng Tai Xue Za Zhi, 2001, 13(1): 8-10. http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz200101004

    [37]

    Li Y, Tinoco R, Elmen L, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5(-/-) mice[J]. Nat Commun, 2019, 10(1): 1492.

    [38]

    Vétizou M,  Pitt JM,  Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8677e261ddb615ca40def12a94ab173e

    [39]

    Lasek W, Zagozdzon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy?[J]. Cancer Immunol Immunother, 2014, 63(5): 419-435. doi: 10.1016-j.cytogfr.2011.04.001/

    [40]

    Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab[J]. Ann Oncol, 2017, 28(6): 1368-1379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84a02347f806c4586514f4805f3cd34f

    [41]

    Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d31cf5f53140c335e04eed586df91c96

    [42]

    Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science (New York, N.Y.), 2018, 359(6371): 91-97. doi: 10.1016/j.eururo.2018.05.033

    [43]

    Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression[J]. Cell Death Differ, 2015, 22(2): 237-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76dc6503ac0c2f665569ce94944b566c

    [44]

    Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371): 104-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2226daca64899e5f962a25f639e0868c

    [45]

    Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019, 565(7741): 600-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1eec3ee9a7b8a1e14e8e8a9288f872bd

    [46]

    Reticker-Flynn NE, Engleman EG. A gut punch fights cancer and infection[J]. Nature, 2019, 565(7741): 573-574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7b49071c620a635cacc15249993441e

    [47]

    Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106. http://cn.bing.com/academic/profile?id=686e2f197b85d3ff2f9de10c7a5edc76&encoded=0&v=paper_preview&mkt=zh-cn

    [48]

    Salmon H, Idoyaga J, Rahman A, et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition[J]. Immunity, 2016, 44(4): 924-938. http://europepmc.org/abstract/MED/27096321

    [49]

    Dai P, Wang W, Yang N, et al. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells[J]. Sci Immunol, 2017, 2(11). pii. eaal1713. doi: 10.1126/sciimmunol.aal1713

    [50]

    Spranger S, Dai D, Horton B, et al. Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy[J]. Cancer Cell, 2017, 31(5): 711-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ec1bc59f58760ae557f9a50d62be23b

    [51]

    Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(6): 1437-1444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e690eee30b7591bad00df63ff8ff1d92

计量
  • 文章访问数:  1664
  • HTML全文浏览量:  502
  • PDF下载量:  2101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-07-07
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2019-11-24

目录

/

返回文章
返回
x 关闭 永久关闭