-
摘要:
人类表皮生长因子受体2(HER2)在多种肿瘤组织中均有不同程度表达,曲妥珠单抗,可明显提高HER2阳性乳腺癌、胃癌的总生存时间。目前对HER2过表达的检测方法主要是免疫组织化学染色和荧光原位杂交法,但这种有创性的检查不能作为肿瘤疗效评价的常规检查而多次进行。靶向HER2的PET/CT分子显像,有望实时、无创监测全身病灶的HER2表达情况。目前靶向HER2的PET/CT分子显像主要包括核素标记抗体显像、核素标记亲和体显像、核素标记抗体片段及纳米抗体显像。靶向HER2的PET/CT显像可用于监测全身病灶的HER2表达情况,监测HER2表达的异质性,可用于原发乳腺癌HER2阴性患者阳性转移灶的筛选,同时也可用于靶向治疗的疗效预测。长半衰期核素铜、锆(64Cu、89Zr)标记完整抗体可直接评估HER2结合Trastuzumab的情况,但其血液药代动力学较慢,血液清除率较慢,需较长时间点的显像,辐射剂量较高。短半衰期核素(68Ga)标记亲和体显像、抗体片段及纳米抗体显像,由于其分子量小,生物分布快,注射药物后可短时间内显像(1~4 h),增加了患者的便利性,可重复显像,亲合体由于与抗体结合位点不同,可用于靶向治疗显像,另外其辐射剂量较低,可能更适于临床应用。
Abstract:Human epidermal growth factor receptor 2 (HER2) is expressed in various tumors. Trastuzumab can significantly improve the overall survival time of HER2-positive breast cancer and gastric cancer patients. At present, the detection methods of HER2 overexpression are mainly IHC and FISH. However, this invasive examination can not be used as a routine examination. PET/CT molecular imaging targeting HER2 is expected to monitor the HER2 expression in whole-body lesions in real time and non-invasively. At present, PET/CT molecular imaging targeting HER2 mainly includes nuclide-labeled antibody imaging, nuclide-labeled affibody/antibody fragment/nanoantibody imaging. It can be used to monitor the expression and the heterogeneity of HER2, screen positive metastatic foci in patients with primary HER2-negative breast cancer and predict the curative effect. Long half-life nuclide (64Cu, 89Zr) labeled intact antibody can directly assess the situation of HER2 binding to trastuzumab, but its blood pharmacokinetics and blood clearance are slow, and long-time imaging is needed. In addition, the long half-life nuclides lead to higher radiation dose. Short half-life nuclide (68Ga) labeled affibody /antibody fragment/nanoantibody imaging, due to its small molecular weight, fast biological distribution and short-time imaging (1-4h) after the injection of drugs, can increase the convenience of the patients and be repeatedly imaged. As the binding site is different from antibody, affibody can be used for the imaging in target therapy. Also, the radiation caused by short half-life nuclide is significantly lower than that by long half-life nuclides, and may be more suitable for clinical application.
-
Key words:
- HER2 /
- PET/CT /
- Molecular imaging /
- Targeting
-
0 引言
骨肉瘤(osteosarcoma)是骨科最常见的恶性肿瘤[1],其发生、发展是一个复杂的、涉及多基因调控网络失衡导致的细胞异常代谢的结果。基因表达受转录水平及翻译水平的调控,转录因子(transcription factors, TFs)及microRNAs(miRNAs)在调控基因的表达方面扮演了重要的角色。TFs和miRNAs之间存在广泛的相互作用和合作调控,共同组成复杂的调控网络,对于了解细胞的生理过程、生物学功能、疾病的发生机制等都起到了重要作用。目前面临的首要难题是骨肉瘤往往不能做到早期诊断,诊断不及时会耽误治疗时机,严重影响患者预后[2-3]。因此,建立新的、有效的骨肉瘤防治措施势在必行,还需寻找并发现新的功能基因靶向治疗骨肉瘤,根据治疗效果建立分子水平预后指标,开发安全的不同于传统治疗骨肉瘤的放化疗药物,是当前科研及临床研究中的热门话题[4-5]。本研究将利用高通量基因芯片技术分析骨肉瘤中差异表达的基因和miRNAs,结合生物信息学软件预测与调控骨肉瘤相关的TFs、miRNAs及其靶基因,分析调控网络中的关键基因及关键miRNAs的功能,构建骨肉瘤发生发展的“TFs-miRNAs”共调控网络。
1 材料与方法
1.1 miRNA数据来源
收集美国国家生物技术信息中心(National Center of Biotechnology Information, NCBI)维护的GEO数据库中的两组数据库(GPL8227、GPL19631)中所有骨肉瘤miRNA数据,收集数据时间截至2016年12月31日。
1.2 数据库资源
用基因本体论数据库(gene ontology, GO)对所分析得到的差异表达基因进行功能注释;使用京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)数据库对差异表达基因进行代谢通路富集分析;使用转录作用元件数据库(transcriptional regulatory element database, TRED)对差异表达基因进行转录因子筛选。
1.3 方法
1.3.1 差异表达基因筛选及注释
为探究骨肉瘤细胞发生发展的分子机制,用R语言下载GEO数据库中GSE28425、GSE65071数据集的原始数据。使用MAS 5.0算法对数据集中的原始数据进行标准化预处理。使用Limma程序包中所提供的统计分析函数,计算与健康者细胞系相比,骨肉瘤患者中表达水平发生变化的基因。选取差异表达倍数≥2.0(Fold Change≥2.0)为筛选阈值,筛选获得差异表达的miRNA。通过差异表达分析获得两组平台共有的骨肉瘤细胞系表达水平发生显著性改变的miRNA,利用DIANA TOOLS数据库中收录的人类基因信息,找到具有显著差异的miRNA靶基因。利用R语言,将筛选得到的差异表达基因与GEO数据库提供的GPL平台注释信息进行匹配,对差异表达基因进行信息注释。
1.3.2 差异表达基因KEGG代谢通路富集分析
为进一步探究差异表达基因参与生物代谢的代谢通路,对筛选得到的差异表达基因进行KEGG代谢通路富集分析。提取差异表达基因GPL平台注释信息中的“Entrez_Gene_ID”信息,应用R语言KEGG程序包与KEGG数据库信息,对每一个差异表达基因向已知的代谢通路进行富集映射,探究差异表达基因集中映射的细胞代谢通路,初步推测骨肉瘤所影响的主要代谢通路,并筛选出与肿瘤通路关系密切的基因,进行GO功能注释分析。
1.3.3 差异表达基因GO功能注释分析
为探究差异表达且与肿瘤通路关系密切的基因所参与的生物功能,对筛选得到的与肿瘤通路关系密切的差异表达基因进行GO功能注释分析。提取差异表达基因GPL平台注释信息中的“Entrez_Gene_ID”信息,使用R语言GO程序包与GO数据库信息,对每一个差异表达基因进行功能注释,探究骨肉瘤组织与正常组织差别的基因功能,初步推测骨肉瘤作用的分子机制。
1.3.4 分子共调控网络构建
为进一步挖掘骨肉瘤的分子调控模式,探究差异表达基因之间的相互调控作用关系,提取TRED数据库中所收录的所有人类转录因子数据。通过Pearson相关性分析,提取基因间分子共调控作用关系。使用Cytoscape version 3.4.0软件对得到的分子共调控作用关系进行可视化展示,构建出最终的分子共调控网络。
2 结果
2.1 差异表达基因的筛选
本研究分别从GPL8227、GPL19631两组数据库中筛选出差异表达miRNA 232个(上调129个、下调103个)和265个(上调205个、下调60个)。共筛选得到两组均包含的差异表达miRNA52个,其中31个miRNA上调表达,21个miRNA下调表达见表 1。
表 1 差异表达的miRNAs信息Table 1 Information of differentially-expressed miRNAs2.2 差异表达基因KEGG代谢通路富集分析
将筛选出的52个差异表达miRNA结合DIANA TOOLS数据库中收录的人类基因信息进行分析。其中KEGG代谢通路富集分析结果见图 1,差异表达基因主要参与肿瘤相关的诸多代谢通路。差异表达的52个miRNA的整体调控模式及每个miRNA所调控的代谢通路情况见图 2。肿瘤代谢通路的分子调控关系网络见图 3。
2.3 差异表达基因GO功能注释分析
将上述筛选出与肿瘤通路关系最紧密的5个miRNA及其靶基因进行GO功能注释分析。注释分析结果显示这些基因主要参与维生素E的代谢路径(response to vitamin E)、RNA聚合酶Ⅱ启动子的转录调控反应(regulation of transcription from RNA polymerase Ⅱ promoter in response etc)、调控神经元的成熟(regulation of neuron maturation)、受体激动剂活性(receptor agonist activity)、正调控血管内皮生长因子受体活性(positive regulation of vascular endothelial growth factor receptor activity)、通过MAPK级联非经典Wnt信号途径(non-canonical wnt signaling pathway via MAPK cascade)、间充质上皮细胞信号转导(mesenchymal-epithelial cell signaling)、Ⅳ型胶原(collagen type Ⅳ)、细胞对生长激素刺激的反应(cellular response to growth hormone stimulus)、蛋白激酶活性的激活(activation of protein kinase A activity)等生物功能,见图 4。
2.4 分子共调控网络构建
最后基于与肿瘤通路密切相关的差异表达基因及TRED数据库中所收录的人类转录因子信息,对差异表达基因进行分子偶联,构建了分子共调控网络,见图 5。
3 讨论
目前miRNA被广泛认为是血液学和肿瘤组织的生物标志物。miRNA有可能通过扭曲、突变、成纤维细胞生长因子(FGF)和骨形态发生蛋白(BMP)信号参与骨的形成。研究发现miRNA与多种骨科疾病有关系,比如有研究认为miRNA-140与骨性关节炎有关,miRNA-503、miRNA-3960与骨质疏松有关,miRNA-34、miRNA-146等与类风湿关节炎有关[6]。研究表明众多的miRNA在骨肉瘤发病的机制中异常表达,被miRNA决定的许多基因被上调或下调。比如Karbasy等[7]通过研究发现miR-125b和miR-300的下调与骨肉瘤的进展相关且两者都起到抑癌基因的作用。Goudarzi等[8]通过研究发现miR-185上调miR-218下调与软骨肉瘤的进展相关联,并且两者均可以作为软骨肉瘤的抑癌基因。Bahador等[9]通过研究发现在青少年、儿童以及青年人骨肉瘤患者中,如果miR-29b和miR-422a的表达下调往往表明患者的预后较差。Taheriazam等[10]通过研究发现下调microRNA-26a和微小RNA-27A的上调有助于判断人类骨肉瘤的攻击性进展。高表达的miR-130b水平和miR-218的低表达与差的临床病理特征有关。此外,有研究表明miR-130b可对预测骨肉瘤的进展起关键作用[10-11]。另有研究表明miR-145、miR-128、miR-34a在骨肉瘤中的表达均发生了改变。miR-335、miR-128、miR-340、miR-214等均与骨肉瘤的侵袭性有重要关系,表达增高后预示骨肉瘤的恶性程度较高,可以较早发生转移,患者的生存期缩短[12]。并且近期有研究表明血浆中miR-34b表达下降可能与骨肉瘤已经发生转移有密切的联系[13],如果能明确这种作用关系会对骨肉瘤的早期诊断起到非凡的作用。就目前研究现状来看骨肉瘤发生发展的分子作用机制尚不十分明确,本研究利用高通量基因芯片技术,通过生物信息学手段,系统性预测构建了一张与肿瘤通路关系密切的TF、miRNA及其靶基因共调控网络蓝图。该分子共调控网络从整体的角度鸟瞰与肿瘤通路关系密切的miRNA及其靶基因的相互作用关系,展示了差异表达基因主要参与肿瘤相关的诸多代谢通路及与肿瘤通路有关的基因主要参与的生物功能。为骨肉瘤诊断标志物簇的筛选提供可靠的选择方向;为临床诊断及预后分析分子靶点的筛选提供实用工具,同时也为其他癌症的同类研究提供新思路。
作者贡献周妮娜: 文章撰写朱华: 文章修改杨志: 确定文章的研究方向、指导文章的写作 -
表 1 核素标记完整的单克隆抗体显像
Table 1 Complete radionuclide-labeled monoclonal antibody imaging
表 2 核素标记亲和体(affibody)显像
Table 2 Radionuclide-labeled affibody imaging
表 3 核素标记抗体片断及纳米抗体显像
Table 3 Radionuclide-labeled antibody fragments and nanobody imaging
-
[1] Ménard S, Casalini P, Campiglio M, et al. HER2 overexpression in various tumor types, focussing on its relationship to the development of invasive breast cancer[J]. Ann Oncol, 2001, 12(Suppl 1): S15-9. doi: 10.1093/annonc/12.suppl_1.S15
[2] Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer[J]. N Engl J Med, 2006, 354(8): 809-20. doi: 10.1056/NEJMoa053028
[3] Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer[J]. N Engl J Med, 2005, 353(16): 1659-72. doi: 10.1056/NEJMoa052306
[4] Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial[J]. Lancet. 2010, 376(9742): 687-97. doi: 10.1016/S0140-6736(10)61121-X
[5] Lower EE, Glass E, Blau R, et al. HER-2/neu expression in primary and metastatic breast cancer[J]. Breast Cancer Res Treat, 2009, 113(2): 301-6. doi: 10.1007/s10549-008-9931-6
[6] Zidan J, Dashkovsky I, Stayerman C, et al. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease[J]. Br J Cancer, 2005, 93(5): 552-6. doi: 10.1038/sj.bjc.6602738
[7] Aurili G, Disalvatore D, Pruneri G, et al. A meta-analysis of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases[J]. Eur J Cancer, 2014, 50(2): 277-89. doi: 10.1016/j.ejca.2013.10.004
[8] Pogue-Geile KL, Kim C, Jeong JH, et al. Predicting degree of benefit from adjuvant trastuzumab in NSABP trial B-31[J]. J Natl Cancer Inst, 2013, 105(23): 1782-8. doi: 10.1093/jnci/djt321
[9] Nahta R. Molecular mechanisms of trastuzumab-based treatment in HER2-overexpressing breast cancer[J]. ISRN Oncol, 2012, 2012: 428062. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3512309
[10] Baselga J, Albanell J, Molina MA, et al. Mechanism of action of trastuzumab and scientific update[J]. Semin Oncol, 2001, 28(5 Suppl 16): 4-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=013fa5c5bc636dc84753c700e5165221
[11] Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zrtrastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer[J]. Clin Pharmacol Ther, 2010, 87(5): 586-92. doi: 10.1038/clpt.2010.12
[12] Laforest R, Lapi SE, Oyama R, et al.[Zr89] Trastuzumab: evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer[J]. Mol Imaging Biol, 2016, 18(6): 952-9. doi: 10.1007/s11307-016-0951-z
[13] Ulaner GA, Hyman DM, Ross DS, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-Trastuzumab PET/CT[J]. J Nucl Med, 2016, 57(10): 1523-8. doi: 10.2967/jnumed.115.172031
[14] O'Donoghue JA, Lewis JS, Pandit-Taskar N, et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer[J]. J Nucl Med, 2018, 59(1): 161-6. doi: 10.2967/jnumed.117.194555
[15] Scheuer W, Friess T, Burtscher H, et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models[J]. Cancer Res, 2009, 69(24): 9330-6. doi: 10.1158/0008-5472.CAN-08-4597
[16] Ulaner GA, Lyashchenko SK, Riedl C, et al. First-in-human HER2-targeted imaging using 89Zr-pertuzumab PET/CT: Dosimetry and clinical application in patients with breast cancer[J]. J Nucl Med, 2018, 59(6): 900-6 doi: 10.2967/jnumed.117.202010
[17] Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer[J]. J Nucl Med, 2013, 54(11): 1869-75. doi: 10.2967/jnumed.112.118612
[18] Mortimer JE, Bading JR, Colcher DM, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET[J]. J Nucl Med, 2014, 55(1): 23-9. doi: 10.2967/jnumed.113.122630
[19] Mortimer JE, Bading JR, Park JM, et al. Tumor Uptake of 64Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer[J]. J Nucl Med, 2018, 59(1): 38-43. doi: 10.2967/jnumed.117.193888
[20] Tolmachev V, Wållberg H, Sandström M, et al. Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels[J]. Eur J Nucl Med Mol Imaging, 2011, 38(3): 531-9. doi: 10.1007/s00259-010-1646-3
[21] Sandberg D, Tolmachev V, Velikyan I, et al. Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT[J]. Eur J Nucl Med Mol Imaging, 2017, 44(8): 1337-46. doi: 10.1007/s00259-017-3650-3
[22] Sandström M, Lindskog K, Velikyan I, et al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients[J]. J Nucl Med, 2016, 57(6): 867-71. doi: 10.2967/jnumed.115.169342
[23] Sörensen J, Velikyan I, Sandberg D, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT[J]. Theranostics, 2016, 6(2): 262-71. doi: 10.7150/thno.13502
[24] Beylergil V, Morris PG, Smith-Jones PM, et al. Pilot study of 68Ga-DOTA-F(ab0)2-trastuzumab in patients with breast cancer[J]. Nucl Med Commun, 2013, 34(12): 1157-65. http://cn.bing.com/academic/profile?id=5b15e3c0a695432b1a6c72e94aed6e10&encoded=0&v=paper_preview&mkt=zh-cn
[25] Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging?[J]. Theranostics, 2014, 4(4): 386-98. doi: 10.7150/thno.8006
[26] Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma[J]. J Nucl Med, 2016, 57(1): 27-33. doi: 10.2967/jnumed.115.162024
[27] Xaviera C, Blykersa A, Vaneycken I, et al. 18F-nanobody for PET imaging of HER2 overexpressing tumors[J]. Nucl Med Biol, 2016, 43(4): 247-52. doi: 10.1016/j.nucmedbio.2016.01.002
[28] Chen R, Zhou X, Liu J, et al. Relationship Between 18F-FDG PET/CT Findings and HER2 Expression in Gastric Cancer[J]. J Nucl Med, 2016, 57(7): 1040-4. doi: 10.2967/jnumed.115.171165
[29] Kim JS, Young Park S. 18F-FDG PET/CT of advanced gastric carcinoma and association of HER2 expression with standardized uptake value[J]. Asia Oceania J Nucl Med Biol, 2014, 2(1): 12-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003822096
[30] Celli R, Colunga M, Patel N, et al. Metabolic Signature on 18F-FDG PET/CT, HER2 Status, and Survival in Gastric Adenocarcinomas[J]. J Nucl Med Technol, 2016, 44(4): 234-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbf68a86e951dde9ba546390522b1df1
[31] Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial[J]. Ann Oncol, 2016, 27(4): 619-24. doi: 10.1093/annonc/mdv577
-
期刊类型引用(1)
1. 冯晓慧,朱正秋. NLR对晚期食管鳞癌一线免疫治疗疗效的预测价值. 医学研究杂志. 2023(07): 157-160+123 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 2199
- HTML全文浏览量: 367
- PDF下载量: 651
- 被引次数: 3