-
摘要:
肿瘤组织失控性增殖及其内部新生血管网的相对不足导致氧气供应不足,低氧是肿瘤微环境的重要特征,低氧环境可激活肿瘤细胞中低氧诱导因子(hypoxia-inducible factors, HIFs)的表达并诱导一系列miRNAs(microRNAs, miRs)含量发生变化。miRNA是一种小的、非编码RNA,可和mRNA 3’端非编码区结合,在转录后水平调节基因的表达,miR-210作为最主要的HIFs诱导表达的miRNA,参与肿瘤细胞多种生命活动,如肿瘤细胞线粒体代谢、血管形成、细胞周期调节、DNA断裂修复等;miR-210在大部分肿瘤患者的血清及肿瘤组织中高表达,且miR-210的表达水平与不良预后呈正相关,故miR-210可用于肿瘤的筛查、诊断和预测患者预后;随着对miR-210下游靶基因的深入研究,针对miR-210细胞信号转导通路的靶向治疗可为恶性肿瘤的治疗提供更广阔的前景。
Abstract:The uncontrolled proliferation of tumor cells and the relative deficiency of the internal neovascularization network lead to insufficient oxygen supply. Hypoxia, an important feature of tumor microenvironment, can active the expression of hypoxia-inducible factors(HIFs) and induce the change of a number of miRNAs (microRNAs, miRs) content. miRNA are small, noncoding RNA, regulating gene expression mainly at post-transcriptional level. miR-210 have an important role in the occurrence and development of tumors as the most principal hypoxia-regulated-miRNAs, participating in cell activities such as mitochondrial metabolism, angiogenesis, cell cycle regulation, DNA repair and so on; miR-210 is over-expressed in most tumor tissues and plasma, and correlated with poor prognosis, therefore, miR-210 can be used for tumor screening, diagnosing and predicting the prognosis of patients. With the further study of downstream target gene of miR-210, the target therapy aiming at miR-210-mediated signal pathway provides a broader prospect for the treatment of malignant tumor.
-
0 引言
进展期食管胃结合部腺癌(adenocarcinoma of esophagogastric junction, AEG)围手术期腹腔热灌注化疗(hyperthermic intraperitoneal chemotherapy, HIPEC)是减少腹腔复发转移进而提高存活率的有力措施[1],但其机制尚未完全明确。HIPEC的治疗疗效受到肿瘤细胞内热休克蛋白(heat shock proteins, HSPs)的负向调节[2]。HSP105b是唯一一种癌症中显性阴性突变的HSP,多中心研究结果显示HSP105b的低表达与肿瘤的良好预后之间存在直接联系[3]。HSP105b在胃癌组织中的表达水平与肿瘤的进展、不良预后及辅助化疗后的复发有关[4],但与HIPEC疗效的相关性未见报道。本研究对进展期AEG肿瘤组织中HSP105b的表达水平与临床病理特征的相关性及与围手术期HIPEC治疗疗效的关系进行分析,进而探讨HIPEC抗肿瘤的可能机制。
1 资料与方法
1.1 一般资料
选择2015年1月—2017年6月安阳市肿瘤医院暨河南科技大学第四附属医院腹部肿瘤外科收治的行经腹R0根治性切除+D2淋巴结清除术的局部进展期Siewert Ⅱ型AEG患者。研究对象的纳入标准:(1)术前活检病理确诊为腺癌;(2)影像学排除远处转移;(3)年龄40~70岁;(4)无手术、化疗禁忌证;(5)无其他恶性肿瘤病史及放化疗史;(6)签署知情同意书,并要求手术治疗;(7)术中确诊侵及浆膜和(或)发现区域肿大淋巴结,而且未发现腹盆腔种植灶。
所有患者术前均签署HIPEC知情同意书、手术同意书、临床试验知情同意书,并获得河南科技大学第四附属医院暨安阳市肿瘤医院生命科学伦理审查委员会审查同意。术中探查后确定是否入组,共入组166例。入组患者按手术先后顺序随机分为2组(各83例):治疗组(术后24 h内开始给予HIPEC治疗,共2次,余给予常规处理)和对照组(术后仅给予常规处理)。治疗组和对照组患者在年龄、性别、BMI、并发症比率、临床分期、胃切除范围及消化道重建方式等方面的差异均无统计学意义(P > 0.05)。
1.2 诊断和分期
所有病例术后检出淋巴结均≥20枚,手术标本均经病理学检查。根据2016年美国癌症联合会(American Joint Committee on Cancer, AJCC)第8版胃癌TNM分期标准[5]进行术后病理分期,分为Ⅱb期患者38例,Ⅲa~b期患者128例。
1.3 手术治疗
所有患者均经腹行食管胃结合部腺癌R0切除+D2淋巴结清扫,治疗组术中留置腹腔灌注管4根。两组均无围手术期死亡病例。
1.4 预防性HIPEC治疗
治疗组患者术后24 h内连接由广州保瑞医疗技术有限公司生产的BR-TRG-Ⅱ型体腔热灌注治疗系统进行治疗。所有患者均行2次国产紫杉醇注射液(术后第1天75 mg/m2, 术后第2天100 mg/m2)的HIPEC。
1.5 标本的处理及免疫组织化学染色
所有标本用10%甲醛固定,石蜡包埋,4 µm厚连续切片。玻片用多聚-L-赖氨酸涂覆,常规苏木素-伊红(HE)染色,确定病理类型。免疫组织化学染色参照文献[6]所述,切片用1:100稀释的兔抗人HSP105b单克隆抗体(GeneTex, 美国)4℃孵育24 h。
使用免疫反应评分(IRS)对HSP105b染色进行评估,评估表达HSP105b的细胞比例及其相对染色强度。HSP105b染色强度分级如下:0,无染色;1+:浅黄色;2+:棕黄色;3+:棕褐色。根据五个代表性区域的至少1 000个癌细胞,计算HSP105b表达的AEG细胞百分比。阳性细胞百分比:无着色细胞计0分,1%~10%计1分, > 10%~50%计2分, > 50%~100%计3分。两项得分相乘,≤3为低表达,≥4为高表达。以上结果由2名病理学专家(副主任医师或主任医师)阅片判断,存在差异时由2位医师一起审查并协商达成一致。
1.6 术后辅助化疗及随访
术后4周内开始给予辅助化疗(SOX三周方案共6周期),其中38例仅给予4~5周期化疗(治疗组20例,对照组18例)。术后以电话、短信及门诊相结合的方式进行随访,每3月1次。随访内容:患者的生活质量、并发症情况、反流性食管炎程度、进食量、肿瘤复发转移情况等。随访至≥36月或至确诊肿瘤复发和(或)转移或非肿瘤因素死亡之日。随访截至2019年6月30日。
1.7 统计学方法
采用SPSS22.0统计软件进行分析。正态分布计量资料以(x±s)表示,组间比较采用t检验。计数资料采用χ2检验进行统计分析。采用Kaplan-Meier法绘制生存曲线,并使用Log rank检验比较组间差异。P < 0.05为差异有统计学意义。
2 结果
2.1 围手术期两组并发症的比较
本研究中治疗组的消化道反应较轻,仅有5例患者恶心,无呕吐患者;骨髓抑制发生率也较低,仅4例出现Ⅰ度血小板减少(未做特殊处理,自行缓解)。未出现白细胞减少患者,也未出现高敏感患者,仅有3例出现皮肤一过性皮疹,治疗结束后自行缓解。治疗组切口感染3例(其中1例合并切口裂开)、吻合口瘘4例(其中1例形成腹腔脓肿)、肠梗阻1例;而对照组切口感染2例,吻合口瘘3例(其中1例形成腹腔脓肿),无肠梗阻患者。经积极治疗后患者均治愈。所有患者均未形成弥漫性腹膜炎。两组在腹腔并发症方面差异无统计学意义(χ2=0.751, P=0.386)。治疗组合并肺部感染者8例,发病比例较高,而对照组仅4例,但差异仍无统计学意义(χ2=1.437, P=0.231)。两组患者均未出现围手术期死亡病例。
2.2 进展期AEG癌组织中HSP105b蛋白表达的临床意义
在癌组织中,HSP105b着色于细胞核中。166例患者中92例呈高表达(55.4%),而74例呈低表达(44.6%)。在进展期AEG组织中HSP105b蛋白表达水平与临床病理特征的关系,见表 1。HSP105b的蛋白表达水平与患者的年龄、性别、肿瘤分化程度、肿瘤的浸润深度、淋巴结转移情况无明显相关性,而仅与是否存在静脉浸润明显相关(t=4.002, P=0.045)。
表 1 进展期AEG患者临床病理特征与HSP105b表达水平的关系Table 1 Relation between HSP105b expression and clinicopathological characteristics of patients with advanced AEG2.3 HSP105b表达强度及是否接受HIPEC治疗对无瘤生存率的影响
所有患者36月内非肿瘤死亡7例,其中HSP105b高表达者4例,HSP105b低表达者3例;治疗组4例,对照组3例。HSP105b高表达患者1、2年无瘤生存率分别为89.1%、65.2%,与低表达患者的93.2%、73.0%相比,差异无统计学意义(χ2=3.121, P=0.092; χ2=3.248, P=0.071);而HSP105b高表达患者的3年无瘤生存率为42.4%,明显低于低表达患者的52.7%,差异有统计学意义(χ2=35.508, P < 0.001),见图 1。治疗组及对照组各83例,治疗组3年无瘤生存率为54.2%,明显高于对照组的39.8%,差异有统计学意义(χ2=4.622, P=0.032),见图 2。在治疗组中,HSP105b高表达者47例,低表达者36例,而在对照组中,HSP105b高表达者45例,低表达者38例,其3年无瘤生存率见图 3。各组的3年无瘤生存率从高到低依次为治疗组-低表达(66.7%)、治疗组-高表达(49.8%)、对照组-低表达(47.4%)、对照组-高表达(35.6%),且均P < 0.05。
3 讨论
AEG是中国常见的消化道恶性肿瘤之一,根治性手术切除是目前唯一可以治愈的方法[7]。进展期AEG最主要的播散途径是腹腔种植转移。由于手术前/中腹腔微转移的存在,即使行根治性切除,仍有较多患者术后会出现腹腔复发转移[8]。而围手术期给予HIPEC可通过热化疗的协同作用和大容量灌注冲刷作用有效杀灭和清除腹腔内残留的癌细胞和微小转移灶、预防腹膜转移癌,对提高进展期AEG患者的整体疗效具有重要意义[9]。但HIPEC的具体机制尚未明了。
热休克蛋白是一组高度保守的分子伴侣蛋白,可以防止蛋白质结构的错误折叠[10]。本研究结果显示肿瘤组织中的HSP105b蛋白表达水平高低与患者的年龄、性别、肿瘤的分化程度、浸润深度、淋巴结转移情况无明显相关,而仅与是否存在静脉浸润明显相关。说明HSP105b的表达水平与肿瘤的静脉浸润能力密切相关,这与在胃腺癌中的研究结果相一致[4]。
与低表达组相比,进展期AEG患者HSP105b高表达组1年、2年无瘤生存率无明显差异,而3年无瘤生存率则明显下降,这与既往在肺腺癌[11]、结直肠癌[12]、胃癌[13]中的研究结果相一致。因此,可以确定进展期AEG癌组织中HSP105b的高表达与患者的远期预后不良有关。
我们对进展期AEG患者随机分组,分别给予围手术期HIPEC治疗(治疗组)和仅给予常规处理(对照组)。结果显示治疗组的2年、3年无瘤生存率均明显高于对照组。可以看出进展期AEG患者根治术后给予围手术期HIPEC治疗可以减少术后腹腔复发转移的机率,减缓肿瘤复发转移速度,充分证实了HIPEC治疗的必要性。根据是否给予了HIPEC治疗和肿瘤组织中HSP105b表达的高低分成4组,计算其3年无瘤生存率。结果显示,HSP105b低表达患者给予HIPEC治疗可以获得最佳的治疗疗效(3年无瘤生存率最高)。说明HSP105b低表达可以加强HIPEC治疗的疗效,而高表达可以增加肿瘤细胞热化疗抵抗[13],但其具体分子机制有待后继研究。本试验不良反应较少,且未出现严重不良反应,与前期的研究结果一致,具有较高安全性[14]。
综上所述,HSP105b蛋白的高表达预示着不良预后,而且HSP105b高表达增加了癌细胞的热化疗抵抗。因此,癌组织中HSP105b的蛋白表达水平可作为进展期AEG患者预后因素及预测HIPEC疗效的有效生物标志物:HSP105b低表达的进展期AEG患者应优选围手术期HIPEC治疗,而对于HSP105b高表达患者将在后继的研究中结合其他分子表型选择敏感的个体化治疗方案。
-
[1] Bensaad K, Harris AL. Hypoxia and metabolism in cancer[J]. Adv Exp Med Biol, 2014, 772: 1-39. doi: 10.1007/978-1-4614-5915-6
[2] Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer[J]. J Exp Clin Cancer Res, 2014, 33:50. doi: 10.1186/1756-9966-33-50
[3] Nijhuis A, Thompson H, Adam J, et al. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance[J]. Hum Mol Genet, 2017, 26(8): 1552-64. doi: 10.1093/hmg/ddx059
[4] Hall JS, Taylor J, Valentine HR, et al. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation[J]. Br J Cancer, 2012, 107(4):684-94. doi: 10.1038/bjc.2012.294
[5] Qu A, Du L, Yang Y, et al. Hypoxia-inducible MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal cancer[J]. PLoS One, 2014, 9(3): e90952. doi: 10.1371/journal.pone.0090952
[6] Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules[J]. Matrix Biol J Inter Society Matrix Biol, 2013, 32(2): 74-85. doi: 10.1016/j.matbio.2012.11.003
[7] Chang W, Chang YL, Park JH, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013, 14(1):69-76. doi: 10.4142/jvs.2013.14.1.69
[8] Devlin C, Greco S, Martelli F, et al. miR-210: More than a Silent Player in Hypoxia[J]. IUBMB Life, 2011, 63(2):94-100. http://cn.bing.com/academic/profile?id=0bd173f0982b4f8b50dab9fc7c0103d3&encoded=0&v=paper_preview&mkt=zh-cn
[9] Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J]. Oncogene, 2010, 29(30): 4362-8. doi: 10.1038/onc.2010.193
[10] HuangX, Le QT, Giaccia AJ. MiR-210 micromanager of the hypoxia pathway[J]. Trends Mol Med, 2010, 16(5): 230-7. doi: 10.1016/j.molmed.2010.03.004
[11] Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells[J]. J Biol Chem, 2013, 288(48): 34343-51. doi: 10.1074/jbc.M113.480822
[12] Yang Y, Zhang J, Xia T, et al. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma[J]. Oncol Rep, 2016, 36(5): 2553-62. doi: 10.3892/or.2016.5129
[13] Cui H, Seubert B, Stahl E, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes[J]. Oncogene, 2015, 34(28): 3640-50. doi: 10.1038/onc.2014.300
[14] Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1)[J]. J Biol Chem, 2011, 286(1): 420-8. doi: 10.1074/jbc.M110.170852
[15] Mei XS, Hu HY, Nie GH. MiR-210 regulates cell cycle in nasopharyngeal carcinoma cell line (CNE-1) under hypoxic condition by reducing the expression of cyclin D1[J]. Chinese-German J Clin Oncol, 2014, 13(7): 323-7. http://cn.bing.com/academic/profile?id=8fa80c8bfcfeabea8f394af5b3524e4e&encoded=0&v=paper_preview&mkt=zh-cn
[16] Noman MZ, Buart S, Romero P, et al. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells[J]. Cancer Res, 2012, 72(18): 4629-41. doi: 10.1158/0008-5472.CAN-12-1383
[17] Yoshioka Y, Kosaka N, Ochiya T, et al. Micromanaging Iron Homeostasis[J]. J Biol Chem, 2012, 287(41): 34110 -9. doi: 10.1074/jbc.M112.356717
[18] Bavelloni A, Poli A, Fiume R, et al. PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells[J]. Oncotarget, 2014, 5(12): 4222-31. http://cn.bing.com/academic/profile?id=81d3a0c1f2f0e8eed4453568c4b5b4c3&encoded=0&v=paper_preview&mkt=zh-cn
[19] Zhang H, Mai Q, Chen J. MicroRNA-210 is increased and it is required for dedifferentiation of osteosarcoma cell line[J]. Cell Biol Inter, 2017, 41(3): 267-75. doi: 10.1002/cbin.v41.3
[20] Grosso S, Doyen J, Parks SK, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines[J]. Cell Death Dis, 2013, 4: e544. doi: 10.1038/cddis.2013.71
[21] Mei Y, Gao C, Wang K, et al. Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia[J]. Cancer Sci, 2014, 105(4): 463-72. doi: 10.1111/cas.2014.105.issue-4
[22] Yang W, Wei J, Sun T, et al. Effects of knockdown of miR-210 in combination with ionizing radiation on human hepatoma xenograft in nude mice[J]. Radiat Oncol, 2013, 8: 102. doi: 10.1186/1748-717X-8-102
[23] Liu TY, Zhang H, Du SM, et al. Expression of microRNA-210 in tissue and serum of renal carcinoma patients and its effect on renal carcinoma cell proliferation, apoptosis, and invasion[J]. Genet Mol Res, 2016, 15(1): 15017746. http://cn.bing.com/academic/profile?id=ec8d3d03d77a9371b700a4055a7b80ed&encoded=0&v=paper_preview&mkt=zh-cn
[24] Wang F, Xiong L, Huang X, et al. miR-210 suppresses BNIP3 to protect against the apoptosis of neural progenitor cells[J]. Stem Cell Res, 2013, 11(1): 657-67. doi: 10.1016/j.scr.2013.04.005
[25] Zhang S, Lai N, Liao K, et al. MicroRNA-210 regulates cell proliferation and apoptosis by targeting regulator of differentiation 1 in glioblastoma cells[J]. Folia Neuropathol, 2015, 53(3): 236-44. http://cn.bing.com/academic/profile?id=57407c0eef126623ed8c73ada26a3292&encoded=0&v=paper_preview&mkt=zh-cn
[26] Shang C, Hong Y, Guo Y, et al. MiR-210 Up-Regulation Inhibits Proliferation and Induces Apoptosis in Glioma Cells by Targeting SIN3A[J]. Med Sci Monit, 2014, 20:2571-7. http://cn.bing.com/academic/profile?id=3404ff41613101f97b42fb5a74aeddd6&encoded=0&v=paper_preview&mkt=zh-cn
[27] Chio CC, Lin JW, Cheng HA, et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells[J]. Arch Toxicol, 2013, 87(3): 459-68. doi: 10.1007/s00204-012-0965-5
[28] He J, Wu J, Xu N, et al. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes[J]. Nucleic Acids Res, 2013, 41(1):498-508. doi: 10.1093/nar/gks995
[29] Sauermann M, Sahin O, Sültmann H, et al. Reduced expression of vacuole membrane protein 1 affects the invasion capacity of tumor cells[J]. Oncogene, 2008, 27(9): 1320-6. doi: 10.1038/sj.onc.1210743
[30] Qu A, Du L, Yang Y, et al. Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer[J]. PLoS One, 2014, 9(3): e90952. doi: 10.1371/journal.pone.0090952
[31] Ren D, Yang Q, Dai Y, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway[J]. Mol Cancer, 2017, 16(1): 117. doi: 10.1186/s12943-017-0688-6
[32] Kai AK, Chan LK, Lo RC, et al. Down-regulation of TIMP2 by HIF-1α/miR-210/HIF-3α regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma[J]. Hepatology, 2016, 64(2): 473-87. doi: 10.1002/hep.28577
[33] Tang X, Chen L, Yan X, et al. Overexpression of miR-210 is Associated with Poor Prognosis of Acute Myeloid Leukemia[J]. Med Sci Monitor Inter Med J Exp Clin Res, 2015, 21: 3427-33. doi: 10.12659/MSM.894812
[34] Lai NS, Wu DG, Fang XG, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma[J]. Br J Cancer, 2015, 112(7): 1241-6. doi: 10.1038/bjc.2015.91
[35] Li M, Ma X, Li M, et al. Prognostic role of microRNA-210 in various carcinomas: a systematic review and meta-analysis[J]. Dis Markers, 2014, 2014: 106197. http://cn.bing.com/academic/profile?id=316f730f05e148fa13722937b4edcb66&encoded=0&v=paper_preview&mkt=zh-cn
[36] Ono S, Oyama T, Lam S, et al. A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients[J]. Oncotarget, 2015, 6(9): 7053-64. http://cn.bing.com/academic/profile?id=202e57308ebe10b4fc46f496880dfead&encoded=0&v=paper_preview&mkt=zh-cn
[37] Yang Y, Qu A, Liu J, et al. Serum miR-210 Contributes to Tumor Detection, Stage Prediction and Dynamic Surveillance in Patients with Bladder Cancer[J]. PLoS One, 2015, 10(8): e0135168. doi: 10.1371/journal.pone.0135168
[38] Lai N, Zhu H, Chen Y, et al. Differential expression of microRNA-210 in gliomas of variable cell origin and correlation between increased expression levels and disease progression in astrocytic tumours.[J]. Folia Neuropathologica, 2014, 52(1): 79-85. http://cn.bing.com/academic/profile?id=1f992d9c8257438daece81b8d868635b&encoded=0&v=paper_preview&mkt=zh-cn
[39] Yang W, Sun T, Cao J, et al. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro[J]. Exp Cell Res, 2012, 318(8): 944-54. doi: 10.1016/j.yexcr.2012.02.010
-
期刊类型引用(13)
1. 周华彬,刘玉兰,王钟昌,利民,郑超. 原发灶切除联合化疗对Ⅳ期结直肠癌的预后影响. 岭南现代临床外科. 2023(03): 220-229 . 百度学术
2. 汪金娇. 超声引导腰方肌阻滞联合全麻在早期结直肠癌患者围手术期的应用效果观察. 中国肛肠病杂志. 2023(07): 12-14 . 百度学术
3. 高勇燕. 手术室规范化护理应用于腹腔镜下结直肠肿瘤切除术患者的效果观察. 中华养生保健. 2023(21): 106-108 . 百度学术
4. 黄燕华,丁杏,周丽华. LC3Ⅱ、SETDB1对进展期结直肠癌患者预后的预测价值及其影响因素分析. 临床和实验医学杂志. 2022(06): 598-601 . 百度学术
5. 李腾宇,黑志军,连玉贵,段小飞,李国宾,孙振强,王贵宪,袁维堂. PD-1抑制剂联合新辅助放化疗治疗微卫星稳定/错配修复正常的局部进展期直肠癌的短期效果. 郑州大学学报(医学版). 2022(04): 585-587 . 百度学术
6. 赵守彰,马强,权冬梅. 玉竹醇提取物B调控免疫代谢抗结直肠癌的药理机制研究. 实用医学杂志. 2022(15): 1908-1912 . 百度学术
7. 李政晓,薛彩强,赵君. 影像组学在肿瘤微环境评估中的研究进展. 兰州大学学报(医学版). 2022(08): 76-79 . 百度学术
8. 袁杰,张丽达. 胃肠道恶性肿瘤的免疫治疗现状. 中国医学创新. 2022(25): 181-184 . 百度学术
9. 邵妍,王丽,高华,赵元元,王婷婷. 直肠造口患者应用耐受评估指导营养管理的价值研究. 中国医药导报. 2022(28): 174-177 . 百度学术
10. 武辉宇. Ⅲ期直肠癌术后放化疗联合恩沃利单抗的疗效分析. 系统医学. 2022(22): 182-186 . 百度学术
11. 赵正强,陈珑,刘宇杰,田素青. 结直肠癌肝转移灶中PD-L1基因阳性患者肝切除后的预后相关因素. 肿瘤防治研究. 2021(08): 782-787 . 本站查看
12. 黄玮玮,戴玲玲,孟鹏,张晓妮. 侯爱画教授从“虚和浊”论治晚期结直肠癌经验. 河北中医. 2021(07): 1067-1070 . 百度学术
13. 周详坤,钟漓,赵志. 结直肠癌免疫疗法的应用研究现状. 结直肠肛门外科. 2021(06): 629-632 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 1700
- HTML全文浏览量: 400
- PDF下载量: 666
- 被引次数: 18