高级搜索

正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用

韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志

韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志. 正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用[J]. 肿瘤防治研究, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
引用本文: 韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志. 正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用[J]. 肿瘤防治研究, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
HAN Xuedi, LIU Fei, GUO Xiaoyi, XU Xiaoxia, XIE Qinghua, LIU Teli, ZHU Hua, YANG Zhi. Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model[J]. Cancer Research on Prevention and Treatment, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
Citation: HAN Xuedi, LIU Fei, GUO Xiaoyi, XU Xiaoxia, XIE Qinghua, LIU Teli, ZHU Hua, YANG Zhi. Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model[J]. Cancer Research on Prevention and Treatment, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405

正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用

基金项目: 

方正创新药物研究基金 20150391

北京市卫生局基金215学科骨干 2015-3-072

详细信息
    作者简介:

    韩雪迪(1992-),女,硕士,主要从事PET影像分子探针的临床应用工作

    通讯作者:

    朱华,E-mail: zhuhuananjing@163.com

    杨志,E-mail: pekyz@163.com

  • 中图分类号: R739.4

Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model

More Information
  • 摘要:
    目的 

    探讨68Ga-PSMA-617在神经胶质瘤U87MG荷瘤鼠的显像情况。

    方法 

    将靶向前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)的新型探针DKFZ-PSMA-617进行68Ga核素标记,利用Radio-TLC对68Ga-PSMA-617的放射化学纯度进行快速质控,然后进行细胞水平实验,尾静脉注射5和40 min后对U87MG荷瘤鼠进行micro-PET显像,同时对PSMA阻滞剂ZJ-43(25 mg/kg)共注射组进行注射后40 min的图像采集。

    结果 

    Radio-TLC对68Ga-PSMA-617的标记率及放化纯测定可在10 min内完成,放化纯高达(99.0±1.9)%,细胞水平实验显示68Ga-PSMA-617分子探针的特异性,同时也显示U87MG细胞表面仅有较少量PSMA表达,而U87MG荷瘤鼠的micro-PET显像可见随时间延长肿瘤对PSMA靶向分子探针的放射性摄取的逐渐增高,靶与非靶比值从1.85±0.02(5 min)增长至3.62±0.175(40 min),且肿瘤对该探针的摄取可被PSMA阻滞剂ZJ-43所抑制。

    结论 

    68Ga-PSMA-617不仅可应用于前列腺癌的诊断,也有望应用于新生血管丰富的神经胶质瘤的诊断。

     

    Abstract:
    Objective 

    To investigate the application of 68Ga-PSMA-617 molecular probe for micro-PET imaging of gliomas tumor model.

    Methods 

    DKFZ-PSMA-617, an effective prostate specific membrane antigen (PSMA) targeted probes, was chosen to be the precursor to be radiolabelled with 68Ga. The radio-chemical yield of 68Ga-PSMA-617 was analyzed by Radio-TLC. Cell uptake experiments were performed on PSMA (+) LNCaP, PSMA (-) PC-3 and U87MG cells. Nude mice bearing U87MG were injected with 68Ga-PSMA-617(7.4 MBq) via the tail vein. Micro-PET imaging was performed 5 and 40 min after the injection. Blocking studies were also performed in U87MG tumor-bearing mice after 40 min of co-injection of 68Ga-PSMA-617 with the PSMA inhibitor (S)-2-(3-((S)-1-carboxy-3-methylbutyl)ureido) pentanedioic acid (ZJ-43) (25 mg/kg).

    Results 

    The radiotracer had a good radio-chemical yield of (99.0±1.9)% quickly tested by Radio-TLC. In cell uptake experiments, the specificity of 68Ga-PSMA-617 was confirmed in PSMA (+) LNCaP cells and PSMA (-) PC-3 cells; meanwhile, it proved the low expression level of PSMA in gliomas U87MG cell line. From micro-PET imaging, U87MG xenografts tumors were visualized and it showed good tumor-to-background value from 1.85±0.02 (5 min) to 3.62±0.175 (40 min) which could be blocked by ZJ-43.

    Conclusion 

    68Ga-PSMA-617 has the potential to be used not only in prostate cancer but also in gliomas tumor model.

     

  • 卵巢癌是最常见的女性恶性肿瘤之一,据统计,2020年中国有约55 300例卵巢癌新发病例和37 500例死亡病例[1]。卵巢癌转移能力较强,多数于诊断时已出现疾病进展或广泛转移,患者5年生存率不足30%[2],因此,研究卵巢癌侵袭转移的机制对于该疾病的治疗具有重要意义。

    近年来大量研究揭示了线粒体代谢相关基因与肿瘤转移、发展密切相关[3-5]。醛脱氢酶5家族A1(ALDH5A1)编码产物为琥珀酸半醛脱氢酶(SSADH),在线粒体代谢中通过催化琥珀酸半醛的氧化反应来降解γ-氨基丁酸(GABA)。ALDH5A1表达下调,SSADH功能缺陷会导致GABA正常降解途径受阻,转而生成γ-羟基丁酸(GHB),Hilvo等[6]报道了GHB可作为高级别卵巢浆液性癌生物标志,其蓄积提示卵巢癌的进展以及预后不良。

    Deng等[7]发现ALDH5A1表达下调可通过抑制甲状腺癌细胞增殖、转移、侵袭、上皮间质转化等途径进而抑制肿瘤发生发展;Kaur等[8]采用Gene Sapiens微阵列数据库进行Meta分析发现,在特定类型肿瘤如胶质瘤、白血病、淋巴瘤中发现ALDH5A1表达上调,而在乳腺癌中ALDH5A1则较正常组织表达下调。

    本课题组前期研究也表明,卵巢癌患者肿瘤组织ALDH5A1较正常卵巢组织表达下调,且ALDH5A1低表达与卵巢癌患者临床预后不良相关[9],然而具体分子机制尚不清楚。本研究将进一步探讨ALDH5A1在卵巢癌发生发展中的作用。

    人卵巢癌上皮SKOV3细胞系来自美国ATCC细胞库。该细胞系在添加10%胎牛血清(FBS,购于美国Gibco公司)和1%青霉素/链霉素(购于美国Gibco公司)的McCoy’s 5A培养基(购于瑞士Lonza公司)中培养,置于37℃、5%CO2的加湿培养箱中。

    GEO数据库[9]下载GSE20565卵巢癌转录组数据,分析ALDH5A1 mRNA表达水平。为进一步证实ALDH5A1和共表达基因的蛋白质组学表达,分析从人类蛋白图谱数据库(https://www.proteinatlas.org/)中获得的卵巢癌组织芯片(TMA)队列。

    基于网络工具PROGgeneV2[10]评估卵巢癌中ALDH5A1表达水平与患者预后的相关性。运用TCGA数据库中ALDH5A1 mRNA表达数据和578例卵巢癌患者的总生存率信息建立Kaplan-Meier生存曲线图。Kaplan-Meier plotter在线平台芯片数据分析不同TP53突变型别与卵巢癌患者总生存率的关系。

    下调目的基因ALDH5A1 ALDH5A1 siRNA购自上海生工生物技术有限公司。靶标序列如下:siRNA1: 5’-CGGAAGTGGTACAATTTAATG-3’;siRNA2: 5’-GGTTCAACAACTACAGGAAAG-3’。LipofectamineTM3000(Thermo Fisher)将siRNA和阴性对照按说明书转染到SKOV3细胞中。转染48 h后测定敲减效率。

    SKOV3野生型细胞和转染siRNA的细胞按1×106个细胞/孔的密度接种于六孔板中,在5%CO2、37℃下孵育。过夜培养,细胞生长到100%密度。用移液器无菌100 μl枪头尖端在单层细胞上划出划痕。PBS冲洗细胞1次,去除细胞碎片,抚平划痕边缘,再用2.5 ml McCoy's 5A培养基进行细胞培养。倒置显微镜摄取划痕边缘的图像。

    依据试剂盒说明书,用包被人工基质层(Matrigel)的Transwell小室评估SKOV3细胞侵袭能力。将基质在冰上融化,然后将30 μl的基质添加到24孔的Transwell小室中并凝固,野生或转染siRNA的细胞按1×105个细胞/孔的密度置于基质凝胶涂层顶部,在37℃、5%CO2下孵育10 min,使细胞下沉。下室为含有McCoy's 5A培养基,10%胎牛血清作为化学引诱剂。在5%CO2、37℃下孵育24 h后,用棉签去除未穿透膜的细胞。成功迁移至膜底面的细胞,4%聚甲醛固定,0.2%结晶紫染色10 min。倒置显微镜下计数细胞数量。

    来自Cancer Cell Line Encyclopedia(CCLE)中的卵巢癌细胞系(n=47)和TCGA中的卵巢浆液性囊腺癌(n=489)患者数据用cBioPortal[11]在线平台进行分析。当Spearman相关性 > 0.2和P < 0.05时,认为该基因为ALDH5A1共表达基因。采用g: Profiler[12]和Metascape[13]两个在线平台数据库中ALDH5A1的共同共表达基因进行通路富集分析。Metascape在线平台将具有相似功能的重要GO关键词可视化为交互网络,进一步确定关键词之间的关系,其中P < 0.01、相关度评分 > 0.3的项位于网状图边缘。此外,运用cBioPortal对ALDH5A1与细胞外基质(ECM)组织通路关键基因进行共表达分析。

    试剂盒(Invitrogen)提取细胞总RNA,用反转录酶(TransGen Biotech)以1 μg总RNA合成cDNA。SYBR Green PCR Master Mix(Takara Bio)和Light Cycler(Roche)行qRT-PCR分析。结果用2-∆∆ct计算。

    所有数据使用GraphPad Prism 8.0进行分析,以三次重复的(x±s)表示。两组间定量资料用Student's t检验。P < 0.05为差异有统计学意义。

    结果显示,转移灶组织(n=35)与原发灶(n=90)相比,转移灶的ALDH5A1表达水平显著下调(P=1.6×10-5),见图 1A

    图  1  ALDH5A1下调促进卵巢癌细胞侵袭与转移
    Figure  1  ALDH5A1 downregulation promoted metastasis and invasion of ovarian cancer
    A: transcription level of ALDH5A1 in the metastatic site of ovarian cancer (OC) (n=35) was markedly downregulated compared with that in the primary site (n=90), P=1.6×10-5; B: qRT-PCR analysis confirmed that ALDH5A1 expression was successfully downregulated in SKOV3-siRNA cells; C: Transwell assay showed that the invasion ability of OC cells dramatically increased; D: scratch-wound healing assay showed that the migratory ability of SKOV3 cells dramatically increased.

    siRNA技术建立ALDH5A1表达下调的SKOV3卵巢癌细胞系,并用qRT-PCR验证:相比于SKOV3-NC组,SKOV3-siRNA1及SKOV3-siRNA2组中ALDH5A1mRNA表达水平下调,见图 1B。Transwell实验表明,随着ALDH5A1表达水平下调,卵巢癌细胞的迁移能力显著增强(P < 0.0001),见图 1C。划痕实验表明,卵巢癌细胞的迁移能力与ALDH5A1表达水平呈负相关(P < 0.01),见图 1D

    运用cBioPortal在线平台从CCLE数据库中提取了47个卵巢癌细胞株中1 575个ALDH5A1共表达基因,见附表 1,从TCGA数据库中的489个卵巢癌患者中提取了1 220个ALDH5A1共表达基因,见附表 2。通过取这两个共表达基因集的交集,发现有128个共同的共表达基因重叠,见图 2A、附表 3(附表 1~3请扫描本文OSID码)。对上述128个ALDH5A1的共表达基因进行功能富集分析,以识别共表达基因列表中可能存在的信号通路。首先,运用g: Profiler鉴定ALDH5A1与128个共表达基因的功能信息和富集途径及过程。如图 2B所示,生物进程(biological processes: BPs)方面,这些基因主要富集在ECM组织(GO: 0030198)和细胞外结构组织(GO: 0043062);细胞组成(cellular components: CCs)方面,这些基因主要富集在ECM通路中(GO: 0031012);分子功能(molecular functions: MFs)分析和Reactome(REAC)分析也显示这些基因在ECM结构成分(GO: 0005201)和ECM组织(REAC: R-HSA-1474244)中显著富集。同时用Metascape平台再次进行了GO分析。推测结果中与ALDH5A1关联密切的20种生命活动,其中富集最显著的基因集是ECM组织通路(GO: 0030198),见图 2C。Metascape绘制的共表达通路富集网路显示此20种生命活动彼此密切相关,见图 2D

    图  2  ALDH5A1基因功能富集分析以及其与卵巢癌中的共表达基因
    Figure  2  Gene-Ontology analysis of ALDH5A1 and coexpressed genes revealing the relationship between ALDH5A1 and ECM signaling pathways in OC
    A: Venn diagram showing the common coexpression genes that were found to overlap with ovarian cancer data derived from the CCLE database and TCGA database; B: g: Profiler was used to identify the functional information and enriched pathways and processes of ALDH5A1 and the 128 common co-expression genes; C: Metascape platform showing the top 20 putative biological processes; D: biological processes as revealed by Metascape in a network diagram.

    运用g: Profiler平台找到ECM通路中与ALDH5A1密切相关的基因MMP2、MMP3和MMP14。借助cBioportal平台中的卵巢癌数据库(TCGA, Firehouse Legacy数据集中卵巢浆液性囊腺癌临床资料)转录组数据“RNA Seq V2 RSEM” mRNA表达谱,对ALDH5A1与MMP2、MMP3、MMP14等基因的mRNA表达水平进行Sperman相关性分析。结果提示ALDH5A1与MMP2表达呈负相关(R=-0.34),ALDH5A1与MMP3表达呈负相关(R=-0.27),ALDH5A1与MMP14表达呈负相关(R=-0.30),见图 3A。通过分析GEO数据库中卵巢癌转录组芯片数据GSE63885,验证ALDH5A1与MMP2、MMP3、MMP14表达水平的相关性。发现ALDH5A1与MMPs表达水平的相关性与卵巢癌患者是否存在TP53突变有关:在所有卵巢癌患者(n=101)中,ALDH5A1仅与MMP14表达水平显著性负相关(R=-0.26, P=0.009);而存在TP53突变(n=75)的卵巢癌患者中,ALDH5A1与MMP14表达水平负相关更加显著(R=-0.36, P=0.0014);在TP53野生型(n=15)卵巢癌患者中,ALDH5A1与MMP2、MMP3、MMP14表达均无显著相关性,见图 3B

    图  3  ALDH5A1与ECM组织通路的共表达分析
    Figure  3  Coexpression analysis of ALDH5A1 and correlated genes among ECM pathways
    A: A negative correlation of mRNA expression was found between ALDH5A1 and MMP2, MMP3, MMP14. mRNA expression data was from "RNA Seq V2 RSEM" profile; B: Analysis of the GEO transcriptome chip data GSE63885 shows the correlation between ALDH5A1 and MMPs in relation to TP53 mutation type. The mRNA level is quantified by log2 (normalized counts + 1); P value was calculated by Person's correlation test.

    一方面,我们从HPA数据库中获取卵巢癌TMA队列,临床样本免疫组织化学染色结果从蛋白水平验证卵巢癌患者ALDH5A1和MMPs表达水平呈负相关:ALDH5A1低表达组(Stain: Not detected/Intensity: Negative)中MMP14表达水平(Stain: low/Intensity: Weak)相较于高表达组(Stain: Medium/Intensity: Moderate)MMP14表达水平(Stain: Not detected/Intensity: Negative)有所提升,与转录组数据分析结果一致,见图 4

    图  4  HPA数据库中两例代表性卵巢癌患者免疫组织化学提示ALDH5A1和MMP14表达负相关
    Figure  4  Immunohistochemical staining results from HPA database demonstrating the negative correlation between ALDH5A1 and MMP14

    在卵巢癌患者中ALDH5A1表达较低者预后较差。ALDH5A1高水平卵巢癌患者的总生存率明显高于ALDH5A1低水平卵巢癌患者(HR=0.75(0.64~0.88), P=0.0005),见图 5A。病理Ⅱ级和Ⅲ级患者ALDH5A1高表达与OS改善相关(HR=0.54(0.34~0.88), P=0.0127; HR=0.79(0.66~0.94), P=0.0077),见图 5B~C

    图  5  ALDH5A1 mRNA表达水平与卵巢癌患者预后相关分析
    Figure  5  Relative analysis between ALDH5A1 mRNA expression and the prognosis of OC patients
    A-C: data from TCGA database. A: all OC patients (n=578); B: gradeⅡ OC patients (n=78); C: gradeⅢ OC patients (n=481); D-F: data from Kaplan-Meier plotter online trancriptome chip data; D: all OC patients (n=1656); E: TP53-mutated OC patients (n=506); F: TP53-wild OC patients (n=94).

    TP53突变型患者的ALDH5A1表达与总生存时间相关性更为显著(HR=0.71(0.56~0.89), P=0.0026),见图 5E,而TP53野生型卵巢癌患者的ALDH5A1表达则与总生存时间无显著相关(HR=1.07(0.62~1.85), P=0.82),见图 5F

    真核细胞的线粒体是一种重要的细胞器,在调节细胞增殖、分化、凋亡过程中发挥关键作用[6]。ALDH5A1属于ALDHs家族,编码产物为SSADH,后者对于线粒体代谢中GABA的降解起着非常重要的作用,功能缺陷或降低可导致GABA和GHB在体内蓄积。早在2001年即有研究报道,卵巢癌患者尿液中可观察到GABA浓度升高[14]。Hilvo等[6]发现高级别浆液性卵巢癌患者中GHB有异常蓄积现象,并证明这种蓄积现象是由ALDH5A1基因突变和活性降低引起的。尽管多项研究一致认为ALDH5A1与卵巢癌的发生发展相关,但卵巢癌中ALDH5A1作用的具体分子机制尚不清楚。

    本研究发现与原发灶相比,卵巢癌患者转移组织中ALDH5A1的表达水平降低,提示细胞中ALDH5A1表达下调可能促进卵巢癌的侵袭和迁移。为深入了解ALDH5A1的功能,我们进行了功能富集分析,结果显示ALDH5A1共表达基因主要与ECM通路相关。ECM是由细胞合成并分泌到细胞外,分布在细胞表面或细胞之间的大分子物质,由基底膜(basement membrane, BM)和细胞间基质组成,是阻止肿瘤细胞转移的重要组织屏障。肿瘤细胞侵袭转移的首要条件是降解ECM和破坏BM,而MMPs是降解ECM最重要的蛋白酶类[15]

    近年来许多研究表明MMPs和肿瘤的发生发展密切相关,MMP2蛋白在卵巢癌转移中起早期应答蛋白的作用[16-18]。MMP14在基底膜和间质组织迁移过程中细胞外基质降解中发挥着核心作用[19],它刺激肿瘤-间质信号通路并促进卵巢癌细胞上的血管生成和肿瘤生长[20]。本研究从转录组表达数据、HPA免疫组织化学样本、生存分析数据发现,ALDH5A1下调促进卵巢癌细胞的侵袭和迁移与ECM通路中的关键基因MMP14相关,且这种影响可能与卵巢癌患者TP53突变有关。

    综上所述,本研究发现ALDH5A1表达下调与卵巢癌转移密切相关,并初步探讨了ALDH5A1下调可能通过ECM通路影响卵巢癌细胞的侵袭转移能力,提示卵巢癌患者预后不良,具体分子机制尚需进一步研究。本研究提示ALDH5A1可能作为卵巢癌转移标志物以及潜在的治疗靶点。

  • 图  1   68GaCl3以及68Ga-PSMA-617标记产物纯化前后的radio-TLC分析

    Figure  1   Radio-TLC analysis of 68GaCl3 and 68Ga-PSMA-617 before and after purification

    图  2   natGa-PSMA-617的质谱分析及68Ga-PSMA-617的HPLC分析

    Figure  2   MALDI-TOF-MS analysis of natGa-PSMA-617 and HPLC analysis of 68Ga-PSMA-617 compound

    图  3   68Ga-PSMA-617在LNCaP、PC-3和U87MG的细胞摄取分析(n=4)

    Figure  3   Cell uptake of 68Ga-PSMA-617 in LNCaP, PC-3 and U87MG cell lines (n=4)

    图  4   68Ga-PSMA-617在U87MG的micro-PET显像

    Figure  4   Micro-PET images of 68Ga-PSMA-617 in U87MG bearing mice

    图  5   利用micro-PET/CT对U87MG荷瘤鼠的68Ga-PSMA-617分布进行融合显像(40 min)

    Figure  5   micro-PET/CT images of 68Ga-PSMA-617 in U87MG bearing mice obtained 40 min after injection

  • [1]

    Okada H, Scheurer ME, Sarkar SN, et al. Integration of epidemiology, immunobiology, and translational research for brain tumors[J]. Ann N Y Acad Sci, 2013, 1284: 17-23. doi: 10.1111/nyas.2013.1284.issue-1

    [2]

    Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI[J]. Eur J Radiol, 2012, 81(3): 508-13. doi: 10.1016/j.ejrad.2011.01.080

    [3]

    Herholz K. Brain tumors: an update on clinical pet research in gliomas[J]. Semin Nucl Med, 2017, 47(1): 5-17. doi: 10.1053/j.semnuclmed.2016.09.004

    [4]

    Singhal T, Narayanan TK, Jain V, et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J]. Mol Imaging Biol, 2008, 10(1): 1-18. http://cn.bing.com/academic/profile?id=9849b3fd1d7122f966590d36b37660e3&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Ristau BT, O'Keefe DS, Bacich DJ. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research[J]. Urol Oncol, 2014, 32(3): 272-9. doi: 10.1016/j.urolonc.2013.09.003

    [6]

    Santoni M, Scarpelli M, Mazzucchelli R, et al. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises[J]. J Biol Regul Homeost Agents, 2014, 28(4): 555-63. http://cn.bing.com/academic/profile?id=aaa3f1734561cd3f234175af4893e0f8&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    Haberkorn U, Eder M, Kopka K, et al. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy[J]. Clin Cancer Res, 2016, 22(1): 9-15. doi: 10.1158/1078-0432.CCR-15-0820

    [8]

    Kiess AP, Banerjee SR, Mease RC, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy[J]. Q J Nucl Med Mol Imaging, 2015, 59(3): 241-68. http://cn.bing.com/academic/profile?id=7e6831a15f1359f599238fc1abe0cb5f&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    Sathekge M, Modiselle M, Vorster M, et al. 68Ga-PSMA imaging of metastatic breast cancer[J]. Eur J Nucl Med Mol Imaging, 2015, 42(9): 1482-3. doi: 10.1007/s00259-015-3066-x

    [10]

    Pandit-Taskar N, O'Donoghue JA, Divgi CR, et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors[J]. EJNMMI Res, 2015, 5: 28. doi: 10.1186/s13550-015-0104-4

    [11]

    Sawicki LM, Buchbender C, Boos J, et al. Diagnostic potential of PET/CT using a Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 102-7. doi: 10.1007/s00259-016-3360-2

    [12]

    Wernicke AG, Varma S, Greenwood EA, et al. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers[J]. APMIS, 2014, 122(6): 482-9. doi: 10.1111/apm.2014.122.issue-6

    [13]

    Nomura N, Pastorino S, Jiang P, et al. Prostate-specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases[J]. Cancer Cell Int, 2014, 14(1): 26. doi: 10.1186/1475-2867-14-26

    [14]

    Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made dota-conjugated psma inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer[J]. J Nucl Med, 2015, 56(6): 914-20. doi: 10.2967/jnumed.114.147413

    [15]

    Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand psma-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions[J]. J Nucl Med, 2015, 56(11): 1697-705. doi: 10.2967/jnumed.115.161299

    [16]

    Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients[J]. J Nucl Med, 2017, 58(1): 85-90. doi: 10.2967/jnumed.116.183194

    [17]

    Delker A, Fendler WP, Kratochwil C, et al. Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2016, 43(1): 42-51. doi: 10.1007/s00259-015-3174-7

    [18]

    Kabasakal L, AbuQbeitah M, Aygün A, et al. Pre-therapeutic dosimetry of normal organs and tissues of (177)Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2015, 42(13): 1976-83. doi: 10.1007/s00259-015-3125-3

    [19]

    Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA targeting α-radiation therapy of metastatic castration-resistant prostate cancer[J]. J Nucl Med, 2016, 57(12): 1941-4. doi: 10.2967/jnumed.116.178673

    [20]

    Grubmüller B, Baum RP, Capasso E, et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: first in-human studies[J]. Cancer Biother Radiopharm, 2016. [Epub ahead of print]

    [21]

    Zhu H, Zhao C, Liu F, et al. Radiolabeling and evaluation of (64)Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer[J]. Am J Cancer Res, 2015, 5(11): 3301-10.

图(5)
计量
  • 文章访问数:  2095
  • HTML全文浏览量:  395
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-11-01
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2018-07-24

目录

/

返回文章
返回
x 关闭 永久关闭