高级搜索

正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用

韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志

韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志. 正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用[J]. 肿瘤防治研究, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
引用本文: 韩雪迪, 刘菲, 郭晓轶, 徐晓霞, 解清华, 刘特立, 朱华, 杨志. 正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用[J]. 肿瘤防治研究, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
HAN Xuedi, LIU Fei, GUO Xiaoyi, XU Xiaoxia, XIE Qinghua, LIU Teli, ZHU Hua, YANG Zhi. Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model[J]. Cancer Research on Prevention and Treatment, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405
Citation: HAN Xuedi, LIU Fei, GUO Xiaoyi, XU Xiaoxia, XIE Qinghua, LIU Teli, ZHU Hua, YANG Zhi. Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model[J]. Cancer Research on Prevention and Treatment, 2018, 45(7): 447-452. DOI: 10.3971/j.issn.1000-8578.2018.17.0405

正电子核素68Ga标记PSMA靶向分子探针在神经胶质瘤模型中的应用

基金项目: 

方正创新药物研究基金 20150391

北京市卫生局基金215学科骨干 2015-3-072

详细信息
    作者简介:

    韩雪迪(1992-),女,硕士,主要从事PET影像分子探针的临床应用工作

    通讯作者:

    朱华,E-mail: zhuhuananjing@163.com

    杨志,E-mail: pekyz@163.com

  • 中图分类号: R739.4

Application of 68Ga-PSMA-617 Molecular Probe for Micro-PET Imaging of Gliomas Model

More Information
  • 摘要:
    目的 

    探讨68Ga-PSMA-617在神经胶质瘤U87MG荷瘤鼠的显像情况。

    方法 

    将靶向前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)的新型探针DKFZ-PSMA-617进行68Ga核素标记,利用Radio-TLC对68Ga-PSMA-617的放射化学纯度进行快速质控,然后进行细胞水平实验,尾静脉注射5和40 min后对U87MG荷瘤鼠进行micro-PET显像,同时对PSMA阻滞剂ZJ-43(25 mg/kg)共注射组进行注射后40 min的图像采集。

    结果 

    Radio-TLC对68Ga-PSMA-617的标记率及放化纯测定可在10 min内完成,放化纯高达(99.0±1.9)%,细胞水平实验显示68Ga-PSMA-617分子探针的特异性,同时也显示U87MG细胞表面仅有较少量PSMA表达,而U87MG荷瘤鼠的micro-PET显像可见随时间延长肿瘤对PSMA靶向分子探针的放射性摄取的逐渐增高,靶与非靶比值从1.85±0.02(5 min)增长至3.62±0.175(40 min),且肿瘤对该探针的摄取可被PSMA阻滞剂ZJ-43所抑制。

    结论 

    68Ga-PSMA-617不仅可应用于前列腺癌的诊断,也有望应用于新生血管丰富的神经胶质瘤的诊断。

     

    Abstract:
    Objective 

    To investigate the application of 68Ga-PSMA-617 molecular probe for micro-PET imaging of gliomas tumor model.

    Methods 

    DKFZ-PSMA-617, an effective prostate specific membrane antigen (PSMA) targeted probes, was chosen to be the precursor to be radiolabelled with 68Ga. The radio-chemical yield of 68Ga-PSMA-617 was analyzed by Radio-TLC. Cell uptake experiments were performed on PSMA (+) LNCaP, PSMA (-) PC-3 and U87MG cells. Nude mice bearing U87MG were injected with 68Ga-PSMA-617(7.4 MBq) via the tail vein. Micro-PET imaging was performed 5 and 40 min after the injection. Blocking studies were also performed in U87MG tumor-bearing mice after 40 min of co-injection of 68Ga-PSMA-617 with the PSMA inhibitor (S)-2-(3-((S)-1-carboxy-3-methylbutyl)ureido) pentanedioic acid (ZJ-43) (25 mg/kg).

    Results 

    The radiotracer had a good radio-chemical yield of (99.0±1.9)% quickly tested by Radio-TLC. In cell uptake experiments, the specificity of 68Ga-PSMA-617 was confirmed in PSMA (+) LNCaP cells and PSMA (-) PC-3 cells; meanwhile, it proved the low expression level of PSMA in gliomas U87MG cell line. From micro-PET imaging, U87MG xenografts tumors were visualized and it showed good tumor-to-background value from 1.85±0.02 (5 min) to 3.62±0.175 (40 min) which could be blocked by ZJ-43.

    Conclusion 

    68Ga-PSMA-617 has the potential to be used not only in prostate cancer but also in gliomas tumor model.

     

  • 胶质瘤是中枢神经系统最常见的颅内原发恶性肿瘤,在所有颅内原发性肿瘤中占70%左右,其中成年人中最常见、恶性程度最高、预后最差的肿瘤是胶质母细胞瘤(glioblastoma, GBM, WHO Ⅳ)[1]。该肿瘤具有恶性增殖和高侵袭性的特点,手术及放化疗后肿瘤复发率高。

    JNK/c-Jun信号通路在调控细胞增殖、分化、凋亡和存活等基本生物学效应中扮演重要角色。JNK磷酸化下游底物c-Jun并使其激活后,可增强肿瘤细胞的增殖、侵袭和迁移能力[2-4]。MKK4和MKK7作为丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase, MAPKK)家族的两个成员,均可以磷酸化并激活JNK[5-7]。有报道称MKK7通过调控JNK活性调控细胞凋亡[8-10]。本课题组前期研究也发现在神经胶质瘤细胞株U251中,小分子干扰沉默MKK7表达后,可以抑制JNK/c-Jun激活[11]。为进一步了解JNK信号通路的调控机制,本研究通过采用免疫组织化学法、小分子干扰、转染及Western blot等技术检测不同组织学类型胶质瘤样本及U87细胞株中MKK7、c-Jun及其磷酸化的表达情况,分析并验证MKK7是否为直接调控JNK/c-Jun活性的关键分子。

    收集2015年11月—2017年11月广州医科大学附属第二医院病理科存档的胶质瘤石蜡包埋标本117例,其中92例胶质瘤和25例胶质母细胞瘤瘤旁正常脑组织。按2016年版“WHO中枢神经系统肿瘤的病理分类”,92例胶质瘤中:WHOⅡ:弥漫型星形细胞瘤15例,少突胶质细胞瘤5例;WHOⅢ:间变性星形细胞瘤11例,间变性少突胶质细胞瘤8例;WHOⅣ:胶质母细胞瘤53例(仅25例有相应的正常对照),患者临床病理特征见表 1。所有患者术前均未行放化疗,均知情同意。本研究得到医院医学伦理会审核批准。

    表  1  92例胶质瘤患者临床病理特征
    Table  1  Clinicopathological features of 92 gliomas patients
    下载: 导出CSV 
    | 显示表格

    人脑胶质瘤U87细胞株购自上海细胞生物学研究所中国科学院细胞库。胎牛血清、0.25%胰酶购于美国Gibco公司。培养基高糖DMEM、转染试剂RNAi MAX、opti-MEM reduced serum medium均购于美国Invitrogen公司。MKK7-1 siRNA、MKK7-2 siRNA、MKK4 siRNA、空白对照siRNA购自上海Gene Pharma公司。anti-MKK7(#4172)、anti-MKK4(#9152)、anti-p-c-Jun(#3270)、anti-GAPDH(#2118s)均购于美国Cell Signaling Technology公司。anti-c-Jun(sc-74543)购美国Santa Cruz Biotechnology公司。

    MKK4-siRNA小分子片段序列正义链:5’-GCCUUACGAAGGAUGAAUCCATT-3’,反义链:5' -UGGAUUCAUCCUUCGUAAGGCTT-3’;MKK7-siRNA1小分子片段序列正义链:5’-CCAACACGGACGUCUUCAU-3’,反义链:5’-AUGAAGACGUCCGUGUUGG-3’;MKK7-siRNA2小分子片段序列正义链:5’-GCUGGCAACAGGACAGUUU-3’,反义链:5’-AAACUGUCCUGUUGCCAGG-3’。

    所有石蜡包埋病理标本均经10%中性福尔马林固定,常规HE染色组织学观察。采用Envision二步法进行免疫组织化学染色。检测标志物:MKK7、c-Jun和p-c-Jun。4 μm厚度切片经脱蜡水化和抗原修复后,滴加一抗,放入37℃水浴箱孵育60 min,PBS冲洗后按照采用Envision检测试剂盒(DAKO公司)说明书进行,室温孵育30 min,再次PBS冲洗,DAB显色,苏木精对比染色,然后脱水、透明、封片,每例均设阳性和阴性对照。按照抗体说明书分别用膀胱组织及肺癌组织作为阳性对照,另外用PBS代替一抗作为阴性对照。

    免疫组织化学结果半定量判定:染色程度:基本不着色为0分;着色呈淡黄色为1分;着色呈黄色为2分;着色呈棕褐色为3分。染色阳性细胞百分比计数,计算阳性肿瘤细胞占总肿瘤细胞的比例,将其分为5个等级:着色阳性细胞占计数细胞≤5%为0分(-),5%~25%为1分(+), > 25%~50%为2分(++), > 50%~75%为3分(+++), > 75%为4分(++++)。将染色程度分级与染色细胞百分比相乘,乘积≥4分为高表达, < 4分为低表达[12-13]

    将U87细胞株置于10%胎牛血清、高糖DMEM液体培养液,37℃、5%CO2及饱和湿度条件下培养,每3~5天用胰酶消化传代1次,取对数生长期细胞进行实验。

    于6孔板内接种对数生长期U87细胞,细胞密度为2×105个每孔,培养液为不含抗生素的DMEM培养液。待细胞生长至60%~80%融合度时,更换为不含血清的DMEM培养液,12 h后按转染试剂RNAi MAX转染方法将MKK4-siRNA、MKK7-siRNA1、MKK7-siRNA2和空白对照siRNA分别转染入U87细胞。

    U87转染细胞于37℃培养箱培养48 h后,每孔2 ml PBS漂洗2遍,每孔加入150 μl IP细胞裂解液(50 mmol/L Tris, HCl pH8.0, 150 mmol/L NaCl, 1%Triton×100, 100 μg/ml PMSF),10 min后收集各组细胞。按照IP裂解液法提取细胞总蛋白,并进行BCA法测定蛋白浓度。灌制4%集成胶和10%分离胶。200 V电压电泳45 min。100 V电压转膜60 min。5%脱脂奶粉室温封闭1 h。一抗(anti-MKK4 1:1 000,anti-MKK7 1:1 000,anti-c-Jun 1:1 000,anti-p-c-Jun 1:1 000,anti-GAPDH 1:5 000)4℃孵育过夜,HRP标记抗兔或抗鼠室温孵育1 h。ECL化学发光后曝光。

    用SPSS20.0统计分析软件包进行数据处理。多组间MKK7及p-c-Jun表达率的比较用多个样本率的χ2检验。数据以平均值±标准差(x±s)表示,多样本间比较采用单因素方差分析One-way ANOVA,两组间的比较采用独立样本t检验。相关性分析采用Spearman等级相关分析。P < 0.05为差异有统计学意义。

    c-Jun和p-c-Jun阳性表达表现为细胞核内见棕黄色颗粒,见图 1。25例胶质母细胞瘤中3例(12%)c-Jun高表达,其瘤旁正常脑组织中均低表达,两者间差异无统计学意义(χ2=3.128, P=0.077),而胶质母细胞瘤中p-c-Jun高表达19例(76%),明显高于瘤旁正常脑组织6例(4%),差异有统计学意义(χ2=27.000, P=0.000)。胶质母细胞瘤中c-Jun的表达与其他类型胶质瘤无明显差异(P=0.086),但p-c-Jun表达明显升高(P=0.000),见表 2。根据WHO分级,WHO Ⅳ级胶质瘤p-c-Jun高表达率明显高于WHO Ⅱ级及WHO Ⅲ级胶质瘤(P=0.000),见图 2A,且p-c-Jun表达强度与胶质瘤WHO分级呈明显正相关(r=0.494, P=0.000)。

    图  1  不同WHO分级胶质瘤及胶质母细胞瘤瘤旁正常脑组织中c-Jun、p-c-Jun、MKK7的表达
    Figure  1  Expression of c-Jun, p-c-Jun and MKK7 in gliomas with different WHO classification and normal brain tissues adjacent to glioblastoma
    A-D: c-Jun, p-c-Jun and MKK7 expression in normal brain tissues adjacent to glioblastoma; E-H: oligodendroglioma(WHO Ⅱ); I-L: anaplastic astrocytoma(WHO Ⅲ); M-P: glioblastoma (WHO Ⅳ); A, E, I, M: HE×200; B-D, F-H, J-L, N-P: IHC ×200
    表  2  不同组织学类型胶质瘤组织中c-Jun及p-c-Jun表达情况
    Table  2  c-Jun and p-c-Jun expression in different histological types of gliomas
    下载: 导出CSV 
    | 显示表格
    图  2  MKK7及p-c-Jun在胶质瘤中的表达相关性分析
    Figure  2  Correlation of MKK7 and p-c-Jun expression in gliomas
    1: normal brain tissue adjacent to GBM; 2: WHOⅡ; 3: WHOⅢ; 4: WHOⅣ

    MKK7阳性表达表现为细胞核或质内见棕黄色颗粒,见图 1。胶质母细胞瘤中MKK7的表达高于其他类型胶质瘤及胶质母细胞瘤瘤旁正常脑组织(P=0.000),见表 3。且MKK7高表达率随着WHO分级的升高而增加(P=0.000),见图 2A。MKK7表达强度与胶质瘤WHO分级呈明显正相关(r=0.606, P=0.000)。

    表  3  不同组织学类型胶质瘤及胶质母细胞瘤瘤旁正常脑组织组织中MKK7表达情况
    Table  3  MKK7 expression in gliomas with different histological types and normal brain tissues adjacent to glioblastoma
    下载: 导出CSV 
    | 显示表格

    92例胶质瘤及25例胶质瘤母细胞瘤瘤旁正常脑组织中,48例MKK7和p-c-Jun均高表达,31例均低表达,30例MKK7高表达和p-c-Jun低表达,8例MKK7低表达和p-c-Jun高表达。根据Spearman相关分析检验,MKK7表达与c-Jun磷酸化水平正相关(r=0.387, P=0.000),见图 2B

    与空白对照组siRNA相比,U87细胞转染MKK4-siRNA、MKK7-siRNA1和MKK7-siRNA2可分别显著抑制MKK4(P=0.003)和MKK7(P=0.009)表达,但只有转染MKK7-siRNA可同时下调c-Jun磷酸化水平(P=0.004),见图 3

    图  3  U87细胞株小分子干扰对MKK4、MKK7的表达及对c-Jun活性的影响
    Figure  3  Effects of siRNAs on MKK4, MKK7 expression and c-Jun activities in glioma U87 cell line analyzed by Western blot
    *: P < 0.05, compared with NC-siRNA groups

    c-Jun N-末端激酶(C-Jun N-terminal kinase, JNK)属于丝裂原活化蛋白激酶家族,其家族包括JNK1、JNK2和JNK3[14],其中JNK1和JNK2广泛表达于各种组织中,而JNK3主要表达于脑、心脏及睾丸等组织中[15]。JNKs参与许多生理过程,如炎性反应、细胞增殖、分化及死亡,Nacken等[16]研究表明JNK活化可促进流感病毒A(IAV)的非结构蛋白(NS1)的表达,从而诱导细胞的凋亡。而且肿瘤的发生和进展也存在JNKs的持续激活,有研究通过体内或体外实验证明多种恶性肿瘤与JNK/c-Jun的激活密切相关,如胃癌、肝癌、胰腺癌、骨肉瘤、脑肿瘤及结直肠癌等中均存在不同JNK蛋白的高表达或突变[17-20]。本研究基于免疫组织化学方法,探讨胶质瘤中c-Jun的磷酸化水平的表达情况。与正常脑组织及非胶质母细胞瘤相比,胶质母细胞瘤中磷酸化c-Jun的表达明显升高,胶质母细胞瘤的高表达率为81.1%,表明磷酸化c-Jun过表达参与了胶质母细胞瘤的发生与发展。

    替莫唑胺(TMZ)是目前公认的治疗脑胶质瘤效果较好的化疗药物,然而脑胶质瘤对TMZ产生耐药性是导致化疗失败的重要原因。因此,为胶质母细胞瘤的化疗寻找新的靶点及新的化疗药物成为了胶质瘤的研究热点。有研究证明在JNK/c-Jun激活后,可以增强替莫唑胺和尼莫司汀等烷化剂等药物对胶质母细胞瘤的促凋亡作用。Tomicic等[21]发现烷基化抗癌药物作用于胶质瘤细胞LN-229后,JNK/c-Jun激活参与了晚期促凋亡反应。Ueno等[22]通过建立耐TMZ细胞模型,与对照组相比,试验组c-Jun终末激酶(JNK)的磷酸化水平增加,其下游信号通路的活性增加。上调JNK表达或siRNA特异性干扰及JNK抑制剂抑制JNK表达可以促进或抑制试验组细胞迁移及侵袭。因此,表明JNK信号通路可能成为新型治疗TMZ耐药胶质瘤的靶点。本研究也进一步证明不同级别胶质瘤c-Jun的表达水平不同,为胶质瘤的化疗,特别是TMZ耐药的处理提供了证据。

    JNK/c-Jun通路的激活在胶质母细胞瘤的发生发展过程中起重要作用,但其上游调控机制并不完全清楚。JNK上游有两个MAPKK,即MKK4和MKK7。我们通过小分子干扰的方法沉默胶质瘤U87细胞株中MKK4及MKK7,发现沉默MKK7后c-Jun磷酸化水平明显下调,而沉默MKK4后c-Jun磷酸化水平无明显变化,在细胞学水平证明了MKK7是调控JNK/c-Jun活性及胶质瘤细胞增殖的关键分子。为了进一步探讨MKK7和磷酸化c-Jun的表达在胶质瘤发生发展中的关系。本研究检测了胶质母细胞瘤瘤旁正常脑组织与不同组织学类型及WHO分级的胶质瘤中MKK7和磷酸化c-Jun的表达情况,发现随着胶质瘤WHO分级的增加,MKK7及磷酸化c-Jun的高表达率明显升高;且MKK7及磷酸化c-Jun的表达正相关,进一步验证了MKK7及JNK/c-Jun通路的信号在胶质母细胞瘤发生发展的中的重要作用,为寻找胶质瘤化疗的新靶点、新化疗药物提供重要的理论依据。

  • 图  1   68GaCl3以及68Ga-PSMA-617标记产物纯化前后的radio-TLC分析

    Figure  1   Radio-TLC analysis of 68GaCl3 and 68Ga-PSMA-617 before and after purification

    图  2   natGa-PSMA-617的质谱分析及68Ga-PSMA-617的HPLC分析

    Figure  2   MALDI-TOF-MS analysis of natGa-PSMA-617 and HPLC analysis of 68Ga-PSMA-617 compound

    图  3   68Ga-PSMA-617在LNCaP、PC-3和U87MG的细胞摄取分析(n=4)

    Figure  3   Cell uptake of 68Ga-PSMA-617 in LNCaP, PC-3 and U87MG cell lines (n=4)

    图  4   68Ga-PSMA-617在U87MG的micro-PET显像

    Figure  4   Micro-PET images of 68Ga-PSMA-617 in U87MG bearing mice

    图  5   利用micro-PET/CT对U87MG荷瘤鼠的68Ga-PSMA-617分布进行融合显像(40 min)

    Figure  5   micro-PET/CT images of 68Ga-PSMA-617 in U87MG bearing mice obtained 40 min after injection

  • [1]

    Okada H, Scheurer ME, Sarkar SN, et al. Integration of epidemiology, immunobiology, and translational research for brain tumors[J]. Ann N Y Acad Sci, 2013, 1284: 17-23. doi: 10.1111/nyas.2013.1284.issue-1

    [2]

    Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI[J]. Eur J Radiol, 2012, 81(3): 508-13. doi: 10.1016/j.ejrad.2011.01.080

    [3]

    Herholz K. Brain tumors: an update on clinical pet research in gliomas[J]. Semin Nucl Med, 2017, 47(1): 5-17. doi: 10.1053/j.semnuclmed.2016.09.004

    [4]

    Singhal T, Narayanan TK, Jain V, et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J]. Mol Imaging Biol, 2008, 10(1): 1-18. http://cn.bing.com/academic/profile?id=9849b3fd1d7122f966590d36b37660e3&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Ristau BT, O'Keefe DS, Bacich DJ. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research[J]. Urol Oncol, 2014, 32(3): 272-9. doi: 10.1016/j.urolonc.2013.09.003

    [6]

    Santoni M, Scarpelli M, Mazzucchelli R, et al. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises[J]. J Biol Regul Homeost Agents, 2014, 28(4): 555-63. http://cn.bing.com/academic/profile?id=aaa3f1734561cd3f234175af4893e0f8&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    Haberkorn U, Eder M, Kopka K, et al. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy[J]. Clin Cancer Res, 2016, 22(1): 9-15. doi: 10.1158/1078-0432.CCR-15-0820

    [8]

    Kiess AP, Banerjee SR, Mease RC, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy[J]. Q J Nucl Med Mol Imaging, 2015, 59(3): 241-68. http://cn.bing.com/academic/profile?id=7e6831a15f1359f599238fc1abe0cb5f&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    Sathekge M, Modiselle M, Vorster M, et al. 68Ga-PSMA imaging of metastatic breast cancer[J]. Eur J Nucl Med Mol Imaging, 2015, 42(9): 1482-3. doi: 10.1007/s00259-015-3066-x

    [10]

    Pandit-Taskar N, O'Donoghue JA, Divgi CR, et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors[J]. EJNMMI Res, 2015, 5: 28. doi: 10.1186/s13550-015-0104-4

    [11]

    Sawicki LM, Buchbender C, Boos J, et al. Diagnostic potential of PET/CT using a Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 102-7. doi: 10.1007/s00259-016-3360-2

    [12]

    Wernicke AG, Varma S, Greenwood EA, et al. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers[J]. APMIS, 2014, 122(6): 482-9. doi: 10.1111/apm.2014.122.issue-6

    [13]

    Nomura N, Pastorino S, Jiang P, et al. Prostate-specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases[J]. Cancer Cell Int, 2014, 14(1): 26. doi: 10.1186/1475-2867-14-26

    [14]

    Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made dota-conjugated psma inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer[J]. J Nucl Med, 2015, 56(6): 914-20. doi: 10.2967/jnumed.114.147413

    [15]

    Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand psma-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions[J]. J Nucl Med, 2015, 56(11): 1697-705. doi: 10.2967/jnumed.115.161299

    [16]

    Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients[J]. J Nucl Med, 2017, 58(1): 85-90. doi: 10.2967/jnumed.116.183194

    [17]

    Delker A, Fendler WP, Kratochwil C, et al. Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2016, 43(1): 42-51. doi: 10.1007/s00259-015-3174-7

    [18]

    Kabasakal L, AbuQbeitah M, Aygün A, et al. Pre-therapeutic dosimetry of normal organs and tissues of (177)Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2015, 42(13): 1976-83. doi: 10.1007/s00259-015-3125-3

    [19]

    Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA targeting α-radiation therapy of metastatic castration-resistant prostate cancer[J]. J Nucl Med, 2016, 57(12): 1941-4. doi: 10.2967/jnumed.116.178673

    [20]

    Grubmüller B, Baum RP, Capasso E, et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: first in-human studies[J]. Cancer Biother Radiopharm, 2016. [Epub ahead of print]

    [21]

    Zhu H, Zhao C, Liu F, et al. Radiolabeling and evaluation of (64)Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer[J]. Am J Cancer Res, 2015, 5(11): 3301-10.

图(5)
计量
  • 文章访问数:  2013
  • HTML全文浏览量:  361
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-11-01
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2018-07-24

目录

/

返回文章
返回
x 关闭 永久关闭